IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v132y2015i1p15-29.html
   My bibliography  Save this article

Towards a typology for constrained climate model forecasts

Author

Listed:
  • A. Lopez
  • E. Suckling
  • F. Otto
  • A. Lorenz
  • D. Rowlands
  • M. Allen

Abstract

In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context. Copyright The Author(s) 2015

Suggested Citation

  • A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:1:p:15-29
    DOI: 10.1007/s10584-014-1292-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1292-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1292-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klibanoff, Peter & Marinacci, Massimo & Mukerji, Sujoy, 2009. "Recursive smooth ambiguity preferences," Journal of Economic Theory, Elsevier, vol. 144(3), pages 930-976, May.
    2. Reto Knutti & Thomas F. Stocker & Fortunat Joos & Gian-Kasper Plattner, 2002. "Constraints on radiative forcing and future climate change from observations and climate model ensembles," Nature, Nature, vol. 416(6882), pages 719-723, April.
    3. Matthias Schmidt & Alexander Lorenz & Hermann Held & Elmar Kriegler, 2011. "Climate targets under uncertainty: challenges and remedies," Climatic Change, Springer, vol. 104(3), pages 783-791, February.
    4. D. A. Stainforth & T. Aina & C. Christensen & M. Collins & N. Faull & D. J. Frame & J. A. Kettleborough & S. Knight & A. Martin & J. M. Murphy & C. Piani & D. Sexton & L. A. Smith & R. A. Spicer & A. , 2005. "Uncertainty in predictions of the climate response to rising levels of greenhouse gases," Nature, Nature, vol. 433(7024), pages 403-406, January.
    5. Peter A. Stott & J. A. Kettleborough, 2002. "Erratum: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 417(6885), pages 205-205, May.
    6. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    7. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    8. I. Watterson & P. Whetton, 2013. "Probabilistic projections of regional temperature and precipitation extending from observed time series," Climatic Change, Springer, vol. 119(3), pages 677-691, August.
    9. Held, Hermann & Kriegler, Elmar & Lessmann, Kai & Edenhofer, Ottmar, 2009. "Efficient climate policies under technology and climate uncertainty," Energy Economics, Elsevier, vol. 31(Supplemen), pages 50-61.
    10. Andreas Lange, 2003. "Climate Change and the Irreversibility Effect – Combining Expected Utility and MaxiMin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(4), pages 417-434, August.
    11. James Risbey & Terence O’Kane, 2011. "Sources of knowledge and ignorance in climate research," Climatic Change, Springer, vol. 108(4), pages 755-773, October.
    12. Myles Allen, 2003. "Liability for climate change," Nature, Nature, vol. 421(6926), pages 891-892, February.
    13. Matthew Collins & Richard E. Chandler & Peter M. Cox & John M. Huthnance & Jonathan Rougier & David B. Stephenson, 2012. "Quantifying future climate change," Nature Climate Change, Nature, vol. 2(6), pages 403-409, June.
    14. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    15. Peter A. Stott & J. A. Kettleborough, 2002. "Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 416(6882), pages 723-726, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    2. Iverson, Terrence, 2012. "Communicating Trade-offs amid Controversial Science: Decision Support for Climate Policy," Ecological Economics, Elsevier, vol. 77(C), pages 74-90.
    3. Held, Hermann, 2020. "Cost Risk Analysisː How Robust Is It in View of Weitzman's Dismal Theorem and Undetermined Risk Functions?," WiSo-HH Working Paper Series 55, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    4. Nigel W. Arnell & Emma L. Tompkins & W. Neil Adger, 2005. "Eliciting Information from Experts on the Likelihood of Rapid Climate Change," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1419-1431, December.
    5. Salvador Pueyo, 2012. "Solution to the paradox of climate sensitivity," Climatic Change, Springer, vol. 113(2), pages 163-179, July.
    6. Xepapadeas, Anastasios, 2024. "Uncertainty and climate change: The IPCC approach vs decision theory," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 109(C).
    7. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    8. Kesten C. Green & J. Scott Armstrong, 2007. "Global Warming: Forecasts by Scientists Versus Scientific Forecasts," Energy & Environment, , vol. 18(7), pages 997-1021, December.
    9. Antony Millner & Simon Dietz & Geoffrey Heal, 2013. "Scientific Ambiguity and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 21-46, May.
    10. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    11. Lemoine, Derek M. & Traeger, Christian P., 2010. "Tipping Points and Ambiguity in the Economics of Climate Change," CUDARE Working Papers 98127, University of California, Berkeley, Department of Agricultural and Resource Economics.
    12. Sumru Altug & Cem Cakmakli & Fabrice Collard & Sujoy Mukerji & Han Ozsoylev, 2020. "Ambiguous Business Cycles: A Quantitative Assessment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 38, pages 220-237, October.
    13. Sujoy Mukerji & Peter Klibanoff and Kyoungwon Seo, 2011. "Relevance and Symmetry," Economics Series Working Papers 539, University of Oxford, Department of Economics.
    14. Loïc Berger, 2014. "The Impact of Ambiguity Prudence on Insurance and Prevention," Working Papers ECARES ECARES 2014-08, ULB -- Universite Libre de Bruxelles.
    15. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    16. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    17. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    18. Backus, David & Ferriere, Axelle & Zin, Stanley, 2015. "Risk and ambiguity in models of business cycles," Journal of Monetary Economics, Elsevier, vol. 69(C), pages 42-63.
    19. Bracha, Anat & Brown, Donald J., 2012. "Affective decision making: A theory of optimism bias," Games and Economic Behavior, Elsevier, vol. 75(1), pages 67-80.
    20. Ellis, Andrew, 2018. "On dynamic consistency in ambiguous games," Games and Economic Behavior, Elsevier, vol. 111(C), pages 241-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:1:p:15-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.