Financial Stress and Realized Volatility: The Case of Agricultural Commodities
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
References listed on IDEAS
- Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023.
"El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "El Nino, La Nina, and Forecastability of the Realized Variance of Agricultural Commodity Prices: Evidence from a Machine Learning Approach," Working Papers 202179, University of Pretoria, Department of Economics.
- Mehmet Balcilar & Kamil Sertoglu & Busra Agan, 2022. "The COVID-19 effects on agricultural commodity markets," Agrekon, Taylor & Francis Journals, vol. 61(3), pages 239-265, July.
- Ioannis Chatziantoniou, Stavros Degiannakis, George Filis, and Tim Lloyd, 2021.
"Oil price volatility is effective in predicting food price volatility. Or is it?,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
- Ioannis Chatziantoniou & Stavros Degiannakis & George Filis & Tim Lloyd, 2021. "Oil Price Volatility is Effective in Predicting Food Price Volatility. Or is it?," The Energy Journal, , vol. 42(6), pages 25-48, November.
- Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022.
"Forecasting realized volatility of agricultural commodities,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023.
"The impacts of oil price volatility on financial stress: Is the COVID-19 period different?,"
International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
- Xin Sheng & Won Joong Kim & Rangan Gupta, 2021. "The Impacts of Oil Price Volatility on Financial Stress: Is the COVID-19 Period Different?," Working Papers 202184, University of Pretoria, Department of Economics.
- Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
- Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2019. "Forecasting Realized Volatility of Agricultural Commodity Futures with Infinite Hidden Markov HAR Models," QBS Working Paper Series 2019/10, Queen's University Belfast, Queen's Business School.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
- Fengping Tian & Ke Yang & Langnan Chen, 2017. "Realized Volatility Forecasting of Agricultural Commodity Futures Using Long Memory and Regime Switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 421-430, July.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Flori, Andrea & Pammolli, Fabio & Spelta, Alessandro, 2021. "Commodity prices co-movements and financial stability: A multidimensional visibility nexus with climate conditions," Journal of Financial Stability, Elsevier, vol. 54(C).
- Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Phillip J. Monin, 2019. "The OFR Financial Stress Index," Risks, MDPI, vol. 7(1), pages 1-21, February.
- Luis A. Gil-Alana & Juncal Cunado & Fernando Pérez de Gracia, 2012. "Persistence, Long Memory, and Unit Roots in Commodity Prices," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(4), pages 451-468, December.
- Sisa Shiba & Goodness C. Aye & Rangan Gupta & Samrat Goswami, 2022.
"Forecastability of Agricultural Commodity Futures Realised Volatility with Daily Infectious Disease-Related Uncertainty,"
JRFM, MDPI, vol. 15(11), pages 1-15, November.
- Sisa Shiba & Goodness C. Aye & Rangan Gupta & Samrat Goswami, 2022. "Forecastability of Agricultural Commodity Futures Realised Volatility with Daily Infectious Disease-Related Uncertainty," Working Papers 202249, University of Pretoria, Department of Economics.
- Akyildirim, Erdinc & Cepni, Oguzhan & Pham, Linh & Uddin, Gazi Salah, 2022. "How connected is the agricultural commodity market to the news-based investor sentiment?," Energy Economics, Elsevier, vol. 113(C).
- Ordu, Beyza Mina & Oran, Adil & Soytas, Ugur, 2018. "Is food financialized? Yes, but only when liquidity is abundant," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 82-96.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Working Papers 202423, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2024.
"Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices,"
Mathematics, MDPI, vol. 12(18), pages 1-26, September.
- Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Working Papers 202423, University of Pretoria, Department of Economics.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024.
"Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2088-2125, September.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2023. "Forecasting the Realized Volatility of Agricultural Commodity Prices: Does Sentiment Matter?," Working Papers 202316, University of Pretoria, Department of Economics.
- Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023.
"El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "El Nino, La Nina, and Forecastability of the Realized Variance of Agricultural Commodity Prices: Evidence from a Machine Learning Approach," Working Papers 202179, University of Pretoria, Department of Economics.
- Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
- Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023.
"Climate risks and state-level stock market realized volatility,"
Journal of Financial Markets, Elsevier, vol. 66(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Climate Risks and State-Level Stock-Market Realized Volatility," Working Papers 202246, University of Pretoria, Department of Economics.
- Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022.
"Forecasting realized volatility of agricultural commodities,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
- Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
- Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024.
"Forecasting international financial stress: The role of climate risks,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
- Santino Del Fava & Rangan Gupta & Christian Pierdzioch & Lavinia Rognone, 2023. "Forecasting International Financial Stress: The Role of Climate Risks," Working Papers 202329, University of Pretoria, Department of Economics.
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment,"
Energies, MDPI, vol. 14(23), pages 1-18, December.
- Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012.
"Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility,"
Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
- Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024.
"Business applications and state‐level stock market realized volatility: A forecasting experiment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Business Applications and State-Level Stock Market Realized Volatility: A Forecasting Experiment," Working Papers 202247, University of Pretoria, Department of Economics.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"Investor Happiness and Predictability of the Realized Volatility of Oil Price,"
Sustainability, MDPI, vol. 12(10), pages 1-11, May.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
- Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023.
"Climate risks and realized volatility of major commodity currency exchange rates,"
Journal of Financial Markets, Elsevier, vol. 62(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Climate Risks and Realized Volatility of Major Commodity Currency Exchange Rates," Working Papers 202210, University of Pretoria, Department of Economics.
- Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2021. "Forecasting realized volatility: The role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1618-1639, October.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022.
"A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2019. "A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data," Working Papers 201978, University of Pretoria, Department of Economics.
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting Realized Volatility of Bitcoin: The Role of the Trade War,"
Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Working Papers 202003, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
More about this item
Keywords
Realized volatility; Agricultural commodities; Financialization; Realized moments; Predictability;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
- Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2023-08-21 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202320. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.