IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v71y2024ics0275531924002356.html
   My bibliography  Save this article

Financial stress and realized volatility: The case of agricultural commodities

Author

Listed:
  • Bonato, Matteo
  • Cepni, Oguzhan
  • Gupta, Rangan
  • Pierdzioch, Christian

Abstract

Given recent debates about the financialization of commodity markets, we analyze the predictive power of financial stress for the realized volatility of agricultural commodity price returns. We estimate realized volatility from high-frequency intra-day data, where the sample period ranges from 2009 to 2020. We study the in-sample and out-of-sample predictability of realized volatility using variants of the popular heterogeneous autoregressive (HAR) model for realized volatility. We analyze the predictive value of financial stress by region of origin and by financial source, and we also control for various realized moments (leverage, realized skewness, realized kurtosis, realized jumps, realized upside tail risk, and realized downside tail risk). We find for several commodities evidence of in-sample predictive value of financial stress for realized volatility, consistent with the financialization hypothesis. This in-sample evidence, however, does not necessarily extend to an out-of-sample forecasting environment.

Suggested Citation

  • Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:riibaf:v:71:y:2024:i:c:s0275531924002356
    DOI: 10.1016/j.ribaf.2024.102442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531924002356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2024.102442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
    2. Mehmet Balcilar & Kamil Sertoglu & Busra Agan, 2022. "The COVID-19 effects on agricultural commodity markets," Agrekon, Taylor & Francis Journals, vol. 61(3), pages 239-265, July.
    3. Ioannis Chatziantoniou, Stavros Degiannakis, George Filis, and Tim Lloyd, 2021. "Oil price volatility is effective in predicting food price volatility. Or is it?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    4. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    5. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2088-2125, September.
    6. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    7. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    8. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    9. Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023. "The impacts of oil price volatility on financial stress: Is the COVID-19 period different?," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
    10. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    11. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2019. "Forecasting Realized Volatility of Agricultural Commodity Futures with Infinite Hidden Markov HAR Models," QBS Working Paper Series 2019/10, Queen's University Belfast, Queen's Business School.
    12. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    13. Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
    14. Fengping Tian & Ke Yang & Langnan Chen, 2017. "Realized Volatility Forecasting of Agricultural Commodity Futures Using Long Memory and Regime Switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 421-430, July.
    15. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
    16. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    17. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    18. Flori, Andrea & Pammolli, Fabio & Spelta, Alessandro, 2021. "Commodity prices co-movements and financial stability: A multidimensional visibility nexus with climate conditions," Journal of Financial Stability, Elsevier, vol. 54(C).
    19. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    20. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    21. Ji, Qiang & Bahloul, Walid & Geng, Jiang-Bo & Gupta, Rangan, 2020. "Trading behaviour connectedness across commodity markets: Evidence from the hedgers’ sentiment perspective," Research in International Business and Finance, Elsevier, vol. 52(C).
    22. Phillip J. Monin, 2019. "The OFR Financial Stress Index," Risks, MDPI, vol. 7(1), pages 1-21, February.
    23. Luis A. Gil-Alana & Juncal Cunado & Fernando Pérez de Gracia, 2012. "Persistence, Long Memory, and Unit Roots in Commodity Prices," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(4), pages 451-468, December.
    24. Sisa Shiba & Goodness C. Aye & Rangan Gupta & Samrat Goswami, 2022. "Forecastability of Agricultural Commodity Futures Realised Volatility with Daily Infectious Disease-Related Uncertainty," JRFM, MDPI, vol. 15(11), pages 1-15, November.
    25. Dejan Živkov & Jovan Njegić & Marko Pećanac, 2019. "Multiscale interdependence between the major agricultural commodities," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 65(2), pages 82-92.
    26. Akyildirim, Erdinc & Cepni, Oguzhan & Pham, Linh & Uddin, Gazi Salah, 2022. "How connected is the agricultural commodity market to the news-based investor sentiment?," Energy Economics, Elsevier, vol. 113(C).
    27. Ordu, Beyza Mina & Oran, Adil & Soytas, Ugur, 2018. "Is food financialized? Yes, but only when liquidity is abundant," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 82-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2088-2125, September.
    2. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
    3. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
    4. Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024. "Forecasting international financial stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    5. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    6. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    7. Dimos Kambouroudis & David McMillan & Katerina Tsakou, 2019. "Forecasting Realized Volatility: The role of implied volatility, leverage effect, overnight returns and volatility of realized volatility," Working Papers 2019-03, Swansea University, School of Management.
    8. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022. "A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
    9. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    10. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    11. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    12. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    13. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    14. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    15. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting Realized US Stock Market Volatility: Is there a Role for Economic Policy Uncertainty?," Working Papers 202408, University of Pretoria, Department of Economics.
    16. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    17. Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
    18. Rangan Gupta & Qiang Ji & Christian Pierdzioch, 2024. "Climate Policy Uncertainty and Financial Stress: Evidence for China," Working Papers 202428, University of Pretoria, Department of Economics.
    19. Gupta, Rangan & Pierdzioch, Christian, 2022. "Climate risks and forecastability of the realized volatility of gold and other metal prices," Resources Policy, Elsevier, vol. 77(C).
    20. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.

    More about this item

    Keywords

    Realized volatility; Agricultural commodities; Financialization; Realized moments; Predictability;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:71:y:2024:i:c:s0275531924002356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.