IDEAS home Printed from https://ideas.repec.org/a/rbs/ijfbss/v11y2022i1p120-131.html
   My bibliography  Save this article

Analysis of stock exchange risk and currency in South African Financial Markets using stable parameter estimation

Author

Listed:
  • Kimera Naradh

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa)

  • Retius Chifurira

    (School of Mathematics, Statistics and Computer Science, University of kwaZulu-Natal, Durban, South Africa)

  • Knowledge Chinhamu

    (School of Mathematics, Statistics and Computer Science, University of kwaZulu-Natal, Durban, South Africa.)

Abstract

In the preceding decade, the South African economy has experienced challenges due to global disruptive events, hence, the implementation of risk mitigation strategies becomes a priority in volatile markets. Stable distributions account for skewness and heavy-tailed behaviour which are frequently observed in financial data. This study aims to investigate the fit of stable distributions for three FTSE/JSE indices and the USD/ZAR currency exchange rate. The maximum likelihood method was applied to fit Nolan’s 𝑆0-parameterization stable distribution. Value at Risk (VaR) is measure assessing market risk, therefore, VaR estimates and Kupiec likelihood test are applied to evaluate the extreme tail behaviour of the fitted stable model. Results show the robustness of stable distributions in the long and short position for each daily returns. This research validates the use of stable distributions aimed at capturing the characteristics financial data. Those concerned with curtailing losses and investigating alternatives for financial modeling in the South African financial industry may benefit the most by using stable distributions.

Suggested Citation

  • Kimera Naradh & Retius Chifurira & Knowledge Chinhamu, 2022. "Analysis of stock exchange risk and currency in South African Financial Markets using stable parameter estimation," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 11(1), pages 120-131, January.
  • Handle: RePEc:rbs:ijfbss:v:11:y:2022:i:1:p:120-131
    as

    Download full text from publisher

    File URL: https://www.ssbfnet.com/ojs/index.php/ijfbs/article/view/1524/1130
    Download Restriction: no

    File URL: https://www.ssbfnet.com/ojs/index.php/ijfbs/article/view/1524
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Djalilov, Khurshid & Piesse, Jenifer, 2016. "Determinants of bank profitability in transition countries: What matters most?," Research in International Business and Finance, Elsevier, vol. 38(C), pages 69-82.
    2. Ece Oral & Cenap Erdemir, 2012. "A Bayesian Estimation of Stable Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 1(3), pages 1-4.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Truc Nguyen & Allan Sampson, 1991. "A note on characterizations of multivariate stable distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 793-801, December.
    5. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    6. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    7. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).
    8. Daniel Traian PELE, 2012. "Estimating the probability of stock market crashes for Bucharest Stock Exchange using stable distributions," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(7(572)), pages 5-12, July.
    9. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Racheva-Iotova, Boryana & Fabozzi, Frank J., 2011. "Fat-tailed models for risk estimation," Working Paper Series in Economics 30, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    2. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    3. Sabrina Khanniche, 2009. "Evaluation of Hedge Fund Returns Value at Risk Using GARCH Models," EconomiX Working Papers 2009-46, University of Paris Nanterre, EconomiX.
    4. Felipe de Oliveira & Sinézio Fernandes Maia, 2017. "Volatility Forecasting before the Subprime Crisis," EcoMod2017 10376, EcoMod.
    5. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    6. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    7. Hamidreza Arian & Hossein Poorvasei & Azin Sharifi & Shiva Zamani, 2020. "The Uncertain Shape of Grey Swans: Extreme Value Theory with Uncertain Threshold," Papers 2011.06693, arXiv.org.
    8. repec:agr:journl:v:4(621):y:2019:i:4(621):p:201-218 is not listed on IDEAS
    9. Siva Kiran GUPTHA. K & Prabhakar RAO. R, 2019. "GARCH based VaR estimation: An empirical evidence from BRICS stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 201-218, Winter.
    10. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    11. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    12. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Graves, Timothy & Franzke, Christian L.E. & Watkins, Nicholas W. & Gramacy, Robert B. & Tindale, Elizabeth, 2017. "Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 60-71.
    14. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    16. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    17. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    18. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    19. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    20. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    21. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbs:ijfbss:v:11:y:2022:i:1:p:120-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hasan Dincer (email available below). General contact details of provider: https://edirc.repec.org/data/ssbffea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.