IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1008006.html
   My bibliography  Save this article

Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence

Author

Listed:
  • Vincenzo Torraca
  • Myrsini Kaforou
  • Jayne Watson
  • Gina M Duggan
  • Hazel Guerrero-Gutierrez
  • Sina Krokowski
  • Michael Hollinshead
  • Thomas B Clarke
  • Rafal J Mostowy
  • Gillian S Tomlinson
  • Vanessa Sancho-Shimizu
  • Abigail Clements
  • Serge Mostowy

Abstract

Shigella flexneri is historically regarded as the primary agent of bacillary dysentery, yet the closely-related Shigella sonnei is replacing S. flexneri, especially in developing countries. The underlying reasons for this dramatic shift are mostly unknown. Using a zebrafish (Danio rerio) model of Shigella infection, we discover that S. sonnei is more virulent than S. flexneri in vivo. Whole animal dual-RNAseq and testing of bacterial mutants suggest that S. sonnei virulence depends on its O-antigen oligosaccharide (which is unique among Shigella species). We show in vivo using zebrafish and ex vivo using human neutrophils that S. sonnei O-antigen can mediate neutrophil tolerance. Consistent with this, we demonstrate that O-antigen enables S. sonnei to resist phagolysosome acidification and promotes neutrophil cell death. Chemical inhibition or promotion of phagolysosome maturation respectively decreases and increases neutrophil control of S. sonnei and zebrafish survival. Strikingly, larvae primed with a sublethal dose of S. sonnei are protected against a secondary lethal dose of S. sonnei in an O-antigen-dependent manner, indicating that exposure to O-antigen can train the innate immune system against S. sonnei. Collectively, these findings reveal O-antigen as an important therapeutic target against bacillary dysentery, and may explain the rapidly increasing S. sonnei burden in developing countries.Author summary: Shigella sonnei is predominantly responsible for dysentery in developed countries, and is replacing Shigella flexneri in areas undergoing economic development and improvements in water quality. Using Shigella infection of zebrafish (in vivo) and human neutrophils (in vitro), we discover that S. sonnei is more virulent than S. flexneri because of neutrophil tolerance mediated by its O-antigen oligosaccharide acquired from the environmental bacteria Plesiomonas shigelloides. To inspire new approaches for S. sonnei control, we show that increased phagolysosomal acidification or innate immune training can promote S. sonnei clearance by neutrophils in vivo. These findings have major implications for our evolutionary understanding of Shigella, and may explain why exposure to P. shigelloides in low and middle-income countries (LMICs) can protect against dysentery incidence.

Suggested Citation

  • Vincenzo Torraca & Myrsini Kaforou & Jayne Watson & Gina M Duggan & Hazel Guerrero-Gutierrez & Sina Krokowski & Michael Hollinshead & Thomas B Clarke & Rafal J Mostowy & Gillian S Tomlinson & Vanessa , 2019. "Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence," PLOS Pathogens, Public Library of Science, vol. 15(12), pages 1-26, December.
  • Handle: RePEc:plo:ppat00:1008006
    DOI: 10.1371/journal.ppat.1008006
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1008006
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1008006&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1008006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sylwia D. Tyrkalska & Sergio Candel & Diego Angosto & Victoria Gómez-Abellán & Fátima Martín-Sánchez & Diana García-Moreno & Rubén Zapata-Pérez & Álvaro Sánchez-Ferrer & María P. Sepulcre & Pablo Pele, 2016. "Neutrophils mediate Salmonella Typhimurium clearance through the GBP4 inflammasome-dependent production of prostaglandins," Nature Communications, Nature, vol. 7(1), pages 1-17, November.
    2. Kate S. Baker & Timothy J. Dallman & Nigel Field & Tristan Childs & Holly Mitchell & Martin Day & François-Xavier Weill & Sophie Lefèvre & Mathieu Tourdjman & Gwenda Hughes & Claire Jenkins & Nicholas, 2018. "Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Peng Li & Wei Jiang & Qin Yu & Wang Liu & Ping Zhou & Jun Li & Junjie Xu & Bo Xu & Fengchao Wang & Feng Shao, 2017. "Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence," Nature, Nature, vol. 551(7680), pages 378-383, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiyang Cao & Yang Jiao & Wei Jiang & Yarong Wu & Si Qin & Yifan Ren & Yang You & Yafang Tan & Xiao Guo & Hongyan Chen & Yuan Zhang & Gengshan Wu & Tong Wang & Yazhou Zhou & Yajun Song & Yujun Cui & F, 2022. "Subversion of GBP-mediated host defense by E3 ligases acquired during Yersinia pestis evolution," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Sophie Lefèvre & Elisabeth Njamkepo & Sarah Feldman & Corinne Ruckly & Isabelle Carle & Monique Lejay-Collin & Laëtitia Fabre & Iman Yassine & Lise Frézal & Maria Pardos de la Gandara & Arnaud Fontane, 2023. "Rapid emergence of extensively drug-resistant Shigella sonnei in France," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. George E. Stenhouse & Karen H. Keddy & Rebecca J. Bengtsson & Neil Hall & Anthony M. Smith & Juno Thomas & Miren Iturriza-Gómara & Kate S. Baker, 2023. "The genomic epidemiology of shigellosis in South Africa," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Lewis C. E. Mason & David R. Greig & Lauren A. Cowley & Sally R. Partridge & Elena Martinez & Grace A. Blackwell & Charlotte E. Chong & P. Malaka Silva & Rebecca J. Bengtsson & Jenny L. Draper & Andre, 2023. "The evolution and international spread of extensively drug resistant Shigella sonnei," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Iman Yassine & Sophie Lefèvre & Elisabeth E. Hansen & Corinne Ruckly & Isabelle Carle & Monique Lejay-Collin & Laëtitia Fabre & Rayane Rafei & Dominique Clermont & Maria Pardos Gandara & Fouad Dabbous, 2022. "Population structure analysis and laboratory monitoring of Shigella by core-genome multilocus sequence typing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Rong Sun & Mingzhu Liu & Jianping Lu & Binbin Chu & Yunmin Yang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Ana T. López-Jiménez & Gizem Özbaykal Güler & Serge Mostowy, 2024. "The great escape: a Shigella effector unlocks the septin cage," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    8. Shaofu Qiu & Kangkang Liu & Chaojie Yang & Ying Xiang & Kaiyuan Min & Kunpeng Zhu & Hongbo Liu & Xinying Du & Mingjuan Yang & Ligui Wang & Yong Sun & Haijian Zhou & Muti Mahe & Jiayong Zhao & Shijun L, 2022. "A Shigella sonnei clone with extensive drug resistance associated with waterborne outbreaks in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Ying Xiang & Kunpeng Zhu & Kaiyuan Min & Yaowen Zhang & Jiangfeng Liu & Kangkang Liu & Yiran Han & Xinge Li & Xinying Du & Xin Wang & Ying Huang & Xinping Li & Yuqian Peng & Chaojie Yang & Hongbo Liu , 2024. "Characterization of a Salmonella enterica serovar Typhimurium lineage with rough colony morphology and multidrug resistance," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1008006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.