IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1003404.html
   My bibliography  Save this article

HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1

Author

Listed:
  • Tomer Hertz
  • Hasan Ahmed
  • David P Friedrich
  • Danilo R Casimiro
  • Steven G Self
  • Lawrence Corey
  • M Juliana McElrath
  • Susan Buchbinder
  • Helen Horton
  • Nicole Frahm
  • Michael N Robertson
  • Barney S Graham
  • Peter Gilbert

Abstract

Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation.Author Summary: The HIV epidemic is a major global health challenge leading to more than 1.8 million deaths annually, and despite significant efforts, the search for an efficacious and safe vaccine continues. Several candidate vaccines were designed to elicit CD8+ T-cell responses and were based on using recombinant Adenovirus serotype 5 (rAd-5) vector that expresses HIV-derived antigens. While none of these vaccines had protective effects, they provide an opportunity to study vaccine-induced T-cell responses on a population level. Here, we analyze data from the three largest epitope mapping studies performed in three clinical trials testing two rAd-5 vaccines. We find that vaccine-induced responses tend to cluster in “epitope hotspots” and that these hotspots are different for each vaccine and more surprisingly in two different vaccine trials testing the same vaccine. We also compared vaccine-induced hotspots to those elicited by natural infection and found that some of the vaccine-induced hotspots are not observed in natural infection. Finally, we show that epitope prediction methods can be useful for predicting vaccine induced hotspots based on participants HLA alleles.

Suggested Citation

  • Tomer Hertz & Hasan Ahmed & David P Friedrich & Danilo R Casimiro & Steven G Self & Lawrence Corey & M Juliana McElrath & Susan Buchbinder & Helen Horton & Nicole Frahm & Michael N Robertson & Barney , 2013. "HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1," PLOS Pathogens, Public Library of Science, vol. 9(6), pages 1-14, June.
  • Handle: RePEc:plo:ppat00:1003404
    DOI: 10.1371/journal.ppat.1003404
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003404
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1003404&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1003404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
    2. Bjoern Peters & Huynh-Hoa Bui & Sune Frankild & Morten Nielsen & Claus Lundegaard & Emrah Kostem & Derek Basch & Kasper Lamberth & Mikkel Harndahl & Ward Fleri & Stephen S Wilson & John Sidney & Ole L, 2006. "A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules," PLOS Computational Biology, Public Library of Science, vol. 2(6), pages 1-11, June.
    3. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    2. Erin E. Gabriel & Michael C. Sachs & Dean A. Follmann & Therese M‐L. Andersson, 2020. "A unified evaluation of differential vaccine efficacy," Biometrics, The International Biometric Society, vol. 76(4), pages 1053-1063, December.
    3. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    4. Gilbert Peter B. & Gabriel Erin E. & Huang Ying & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    5. Emily K. Roberts & Michael R. Elliott & Jeremy M. G. Taylor, 2023. "Solutions for surrogacy validation with longitudinal outcomes for a gene therapy," Biometrics, The International Biometric Society, vol. 79(3), pages 1840-1852, September.
    6. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    7. Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
    8. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    9. Gilbert Peter B. & Hudgens Michael G. & Wolfson Julian, 2011. "Commentary on "Principal Stratification -- a Goal or a Tool?" by Judea Pearl," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-15, September.
    10. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    11. Julian Wolfson & Peter Gilbert, 2010. "Statistical Identifiability and the Surrogate Endpoint Problem, with Application to Vaccine Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1153-1161, December.
    12. Gilbert Peter B. & Blette Bryan S. & Shepherd Bryan E. & Hudgens Michael G., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    13. Ying Huang, 2018. "Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling," Biometrics, The International Biometric Society, vol. 74(1), pages 27-39, March.
    14. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    15. Michael G. Hudgens & Peter B. Gilbert, 2009. "Assessing Vaccine Effects in Repeated Low-Dose Challenge Experiments," Biometrics, The International Biometric Society, vol. 65(4), pages 1223-1232, December.
    16. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    17. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    18. Hao Zhang & Peng Wang & Nikitas Papangelopoulos & Ying Xu & Alessandro Sette & Philip E Bourne & Ole Lund & Julia Ponomarenko & Morten Nielsen & Bjoern Peters, 2010. "Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    19. Ghosh, Debashis, 2012. "A causal framework for surrogate endpoints with semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1898-1902.
    20. Peng Wang & John Sidney & Courtney Dow & Bianca Mothé & Alessandro Sette & Bjoern Peters, 2008. "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1003404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.