Fruit classification using attention-based MobileNetV2 for industrial applications
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0264586
Download full text from publisher
References listed on IDEAS
- Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ganbayar Batchuluun & Se Hyun Nam & Kang Ryoung Park, 2022. "Deep Learning-Based Plant-Image Classification Using a Small Training Dataset," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
- Kathiresan Shankar & Sachin Kumar & Ashit Kumar Dutta & Ahmed Alkhayyat & Anwar Ja’afar Mohamad Jawad & Ali Hashim Abbas & Yousif K. Yousif, 2022. "An Automated Hyperparameter Tuning Recurrent Neural Network Model for Fruit Classification," Mathematics, MDPI, vol. 10(13), pages 1-18, July.
- Shilin Li & Shujuan Zhang & Jianxin Xue & Haixia Sun & Rui Ren, 2022. "A Fast Neural Network Based on Attention Mechanisms for Detecting Field Flat Jujube," Agriculture, MDPI, vol. 12(5), pages 1-19, May.
- Ganbayar Batchuluun & Se Hyun Nam & Kang Ryoung Park, 2022. "Deep Learning-Based Plant Classification Using Nonaligned Thermal and Visible Light Images," Mathematics, MDPI, vol. 10(21), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harsimrat Kaeley & Ye QIAO & Nader BAGHERZADEH, 0000. "Support for Stock Trend Prediction Using Transformers and Sentiment Analysis," Proceedings of Economics and Finance Conferences 13815878, International Institute of Social and Economic Sciences.
- Ilia Zaznov & Julian Kunkel & Alfonso Dufour & Atta Badii, 2022. "Predicting Stock Price Changes Based on the Limit Order Book: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-33, April.
- Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
- Changzhi Li & Dandan Liu & Mao Wang & Hanlin Wang & Shuai Xu, 2023. "Detection of Outliers in Time Series Power Data Based on Prediction Errors," Energies, MDPI, vol. 16(2), pages 1-19, January.
- Li Rong Wang & Hsuan Fu & Xiuyi Fan, 2023. "Stock Price Predictability and the Business Cycle via Machine Learning," Papers 2304.09937, arXiv.org.
- Harsimrat Kaeley & Ye Qiao & Nader Bagherzadeh, 2023. "Support for Stock Trend Prediction Using Transformers and Sentiment Analysis," Papers 2305.14368, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0264586. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.