Deep Learning-Based Plant-Image Classification Using a Small Training Dataset
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tej Bahadur Shahi & Chiranjibi Sitaula & Arjun Neupane & William Guo, 2022. "Fruit classification using attention-based MobileNetV2 for industrial applications," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ganbayar Batchuluun & Se Hyun Nam & Kang Ryoung Park, 2022. "Deep Learning-Based Plant Classification Using Nonaligned Thermal and Visible Light Images," Mathematics, MDPI, vol. 10(21), pages 1-18, November.
- Kathiresan Shankar & Sachin Kumar & Ashit Kumar Dutta & Ahmed Alkhayyat & Anwar Ja’afar Mohamad Jawad & Ali Hashim Abbas & Yousif K. Yousif, 2022. "An Automated Hyperparameter Tuning Recurrent Neural Network Model for Fruit Classification," Mathematics, MDPI, vol. 10(13), pages 1-18, July.
- Shilin Li & Shujuan Zhang & Jianxin Xue & Haixia Sun & Rui Ren, 2022. "A Fast Neural Network Based on Attention Mechanisms for Detecting Field Flat Jujube," Agriculture, MDPI, vol. 12(5), pages 1-19, May.
More about this item
Keywords
plant image classification; image augmentation; deep learning; PI-GAN; PI-CNN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3091-:d:899750. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.