IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0257591.html
   My bibliography  Save this article

High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans

Author

Listed:
  • Drew Benjamin Sinha
  • Zachary Scott Pincus

Abstract

Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.

Suggested Citation

  • Drew Benjamin Sinha & Zachary Scott Pincus, 2022. "High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0257591
    DOI: 10.1371/journal.pone.0257591
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257591
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0257591&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0257591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura A. Herndon & Peter J. Schmeissner & Justyna M. Dudaronek & Paula A. Brown & Kristin M. Listner & Yuko Sakano & Marie C. Paupard & David H. Hall & Monica Driscoll, 2002. "Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans," Nature, Nature, vol. 419(6909), pages 808-814, October.
    2. Céline N Martineau & André E X Brown & Patrick Laurent, 2020. "Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-14, July.
    3. Patrick D McMullen & Erin Z Aprison & Peter B Winter & Luis A N Amaral & Richard I Morimoto & Ilya Ruvinsky, 2012. "Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-12, January.
    4. Jeong-Hoon Hahm & Sunhee Kim & Race DiLoreto & Cheng Shi & Seung-Jae V. Lee & Coleen T. Murphy & Hong Gil Nam, 2015. "C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    5. Yuan Zhao & Ann F. Gilliat & Matthias Ziehm & Mark Turmaine & Hongyuan Wang & Marina Ezcurra & Chenhao Yang & George Phillips & David McBay & William B. Zhang & Linda Partridge & Zachary Pincus & Davi, 2017. "Two forms of death in ageing Caenorhabditis elegans," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan Xie & Helmut Fuchs & Enzo Scifo & Dan Liu & Ahmad Aziz & Juan Antonio Aguilar-Pimentel & Oana Veronica Amarie & Lore Becker & Patricia da Silva-Buttkus & Julia Calzada-Wack & Yi-Li Cho & Yushuang , 2022. "Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice," Nature Communications, Nature, vol. 13(1), pages 1-29, December.
    2. Katharina Jovic & Mark G Sterken & Jacopo Grilli & Roel P J Bevers & Miriam Rodriguez & Joost A G Riksen & Stefano Allesina & Jan E Kammenga & L Basten Snoek, 2017. "Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    3. Céline N Martineau & André E X Brown & Patrick Laurent, 2020. "Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-14, July.
    4. Carolin Thomas & Reto Erni & Jia Yee Wu & Fabian Fischer & Greta Lamers & Giovanna Grigolon & Sarah J. Mitchell & Kim Zarse & Erick M. Carreira & Michael Ristow, 2023. "A naturally occurring polyacetylene isolated from carrots promotes health and delays signatures of aging," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Spencer Farrell & Arnold Mitnitski & Kenneth Rockwood & Andrew D Rutenberg, 2022. "Interpretable machine learning for high-dimensional trajectories of aging health," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-30, January.
    6. Christophe Restif & Carolina Ibáñez-Ventoso & Mehul M Vora & Suzhen Guo & Dimitris Metaxas & Monica Driscoll, 2014. "CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    7. Weilin Kong & Guoli Gu & Tong Dai & Beibei Chen & Yanli Wang & Zheng Zeng & Mintie Pu, 2024. "ELO-6 expression predicts longevity in isogenic populations of Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Saurabh Thapliyal & Isabel Beets & Dominique A. Glauser, 2023. "Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Maria Gabriella Melchiorre & Marco Socci & Sabrina Quattrini & Giovanni Lamura & Barbara D’Amen, 2022. "Frail Older People Ageing in Place in Italy: Use of Health Services and Relationship with General Practitioner," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    10. Carina C. Kern & Shivangi Srivastava & Marina Ezcurra & Kuei Ching Hsiung & Nancy Hui & StJohn Townsend & Dominik Maczik & Bruce Zhang & Victoria Tse & Viktoras Konstantellos & Jürg Bähler & David Gem, 2023. "C. elegans ageing is accelerated by a self-destructive reproductive programme," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0257591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.