IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0247793.html
   My bibliography  Save this article

Reduced soil fauna decomposition in a high background radiation area

Author

Listed:
  • Hallvard Haanes
  • Runhild Gjelsvik

Abstract

Decomposition of litter and organic matter is a very important soil ecosystem function where soil fauna play an important role. Knowledge of the responses in decomposition and soil fauna to different stressors is therefore crucial. However, the extent to which radioactivity may affect soil fauna is not so well known. There are some results showing effects on soil fauna at uranium mines and near Chernobyl from relatively high levels of anthropogenic radionuclides. We hypothesize that naturally occurring radionuclides affect soil fauna and thus litter decomposition, which will covary with radionuclide levels when accounting for important soil parameters. We have therefore used standardised litterbags with two different mesh sizes filled with birch leaves (Betula pubescens) to assess litter decomposition in an area with enhanced levels of naturally occurring radionuclides in the thorium (232Th) and uranium (238U) decay chains while controlling for variation in important soil parameters like pH, organic matter content, moisture and large grain size. We show that decomposition rate is higher in litterbags with large mesh size compared to litterbags with a fine mesh size that excludes soil fauna. We also find that litter dried at room temperature is decomposed at a faster rate than litter dried in oven (60⁰C). This was surprising given the associated denaturation of proteins and anticipated increased nutritional level but may be explained by the increased stiffness of oven-dried litter. This result is important since different studies often use either oven-dried or room temperature-dried litter. Taking the above into account, we explore statistical models to show large and expected effects of soil parameters but also significant effects on litter decomposition of the naturally occurring radionuclide levels. We use the ERICA tool to estimate total dose rate per coarse litterbag for four different model organisms, and in subsequent different statistical models we identify that the model including the dose rates of a small tube-shape is the best statistical model. In another statistical model including soil parameters and radionuclide distributions, 226Ra (or uranium precursory radionuclides) explain variation in litter decomposition while 228Ra (and precursors) do not. This may hint to chemical toxicity effects of uranium. However, when combining this model with the best model, the resulting simplified model is equal to the tube-shape dose-rate model. There is thus a need for more research on how naturally occurring radionuclides affect soil fauna, but the study at hand show the importance of an ecosystem approach and the ecosystem parameter soil decomposition.

Suggested Citation

  • Hallvard Haanes & Runhild Gjelsvik, 2021. "Reduced soil fauna decomposition in a high background radiation area," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-25, March.
  • Handle: RePEc:plo:pone00:0247793
    DOI: 10.1371/journal.pone.0247793
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247793
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0247793&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0247793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    2. Karl S. Zimmerer & Steven J. Vanek, 2016. "Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change," Land, MDPI, vol. 5(2), pages 1-28, April.
    3. John Taylor & Sarah Lovell, 2014. "Urban home food gardens in the Global North: research traditions and future directions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(2), pages 285-305, June.
    4. Alberto Orgiazzi & Erica Lumini & R Henrik Nilsson & Mariangela Girlanda & Alfredo Vizzini & Paola Bonfante & Valeria Bianciotto, 2012. "Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    5. Foudi, Sébastien, 2012. "The role of farmers' property rights in soil ecosystem services conservation," Ecological Economics, Elsevier, vol. 83(C), pages 90-96.
    6. Manoj Kaushal & Mary Atieno & Sylvanus Odjo & Frederick Baijukya & Yosef Gebrehawaryat & Carlo Fadda, 2025. "Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    7. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Plaas, Elke & Meyer-Wolfarth, Friederike & Banse, Martin & Bengtsson, Jan & Bergmann, Holger & Faber, Jack & Potthoff, Martin & Runge, Tania & Schrader, Stefan & Taylor, Astrid, 2019. "Towards valuation of biodiversity in agricultural soils: A case for earthworms," Ecological Economics, Elsevier, vol. 159(C), pages 291-300.
    9. Wenyue Song & Hongqi Wu & Zequn Xiang & Yanmin Fan & Shuaishuai Wang & Jia Guo, 2024. "Effects of Plastic Mulch Residue on Soil Fungal Communities in Cotton," Agriculture, MDPI, vol. 14(8), pages 1-16, August.
    10. Sébastien Foudi, 2012. "Exploitation of soil biota ecosystem services in agriculture: a bioeconomic approach," Working Papers 2012-02, BC3.
    11. E. Sayad & S.M. Hosseini & V. Hosseini & M.-H. Salehe-Shooshtari, 2012. "Soil macrofauna in relation to soil and leaf litter properties in tree plantations," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 58(4), pages 170-180.
    12. Nadia Glæsner & Katharina Helming & Wim De Vries, 2014. "Do Current European Policies Prevent Soil Threats and Support Soil Functions?," Sustainability, MDPI, vol. 6(12), pages 1-26, December.
    13. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    14. Taili Chen & Zhonglin Shi & Anbang Wen & Lina Li & Wenkai Wang, 2023. "The Role of Paddy Fields in the Sediment of a Small Agricultural Catchment in the Three Gorges Reservoir Region by the Sediment Fingerprinting Method," Land, MDPI, vol. 12(4), pages 1-14, April.
    15. Senicovscaia, Irina, 2013. "Conservation of invertebrates’ biodiversity in soils of the Republic of Moldova," MPRA Paper 53453, University Library of Munich, Germany.
    16. Edens, Bram & Hein, Lars, 2013. "Towards a consistent approach for ecosystem accounting," Ecological Economics, Elsevier, vol. 90(C), pages 41-52.
    17. Denise M. Finney & Samantha Garritano & Matthew Kenwood, 2021. "Forage Species Identity Shapes Soil Biota in a Temperate Agroecosystem," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    18. Lucantoni, Dario & Sy, Mouhamed Rassoul & Goïta, Mamadou & Veyret-Picot, Maude & Vicovaro, Marcello & Bicksler, Abram & Mottet, Anne, 2023. "Evidence on the multidimensional performance of agroecology in Mali using TAPE," Agricultural Systems, Elsevier, vol. 204(C).
    19. Stallman, Heidi R., 2011. "Ecosystem services in agriculture: Determining suitability for provision by collective management," Ecological Economics, Elsevier, vol. 71(C), pages 131-139.
    20. Lun, Yang & Jing, Sun & Moucheng, Liu & Qingwen, Min, 2021. "Agricultural production under rural tourism on the Qinghai-Tibet Plateau: From the perspective of smallholder farmers," Land Use Policy, Elsevier, vol. 103(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0247793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.