IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5689-d557605.html
   My bibliography  Save this article

Forage Species Identity Shapes Soil Biota in a Temperate Agroecosystem

Author

Listed:
  • Denise M. Finney

    (Department of Biology, Ursinus College, Collegeville, PA 19426, USA)

  • Samantha Garritano

    (Department of Biology, Ursinus College, Collegeville, PA 19426, USA)

  • Matthew Kenwood

    (Department of Biology, Ursinus College, Collegeville, PA 19426, USA)

Abstract

Increasing plant diversity in the perennial phase of pasture-crop rotations is predicted to positively affect belowground productivity and microbial communities and, in turn, augment belowground agroecosystem services including soil health and carbon storage. Using two grass and one legume forage species grown as monocultures and combined in four intercropped combinations, we evaluated how species identity and richness influence belowground productivity, soil microbial communities, and soil C pools. Though grass-legume intercrops demonstrated higher aboveground productivity than component species grown in monoculture, higher species richness was not associated with increased productivity belowground. Root biomass was greatest in tall fescue ( Festuca arundinacea Schreb.) monoculture, and intercrops including this species. Species identity was similarly associated with soil microbial community attributes. Orchardgrass ( Dactylis glomerata L.) monoculture exhibited lower total microbial abundance and lower bacterial abundance than grass-legume intercrops. Bacterial abundance was also lower in orchardgrass compared to white clover ( Trifolium repens L.) monoculture. A common indictor of soil function, the fungal:bacterial ratio, was higher in grass-only than clover-only stands. The prevalence of species-specific impacts on roots and microbial communities in this study suggests that species identity may have a stronger influence than species richness on belowground agroecosystem services from perennial forages in temperate regions.

Suggested Citation

  • Denise M. Finney & Samantha Garritano & Matthew Kenwood, 2021. "Forage Species Identity Shapes Soil Biota in a Temperate Agroecosystem," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5689-:d:557605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David U. Hooper & E. Carol Adair & Bradley J. Cardinale & Jarrett E. K. Byrnes & Bruce A. Hungate & Kristin L. Matulich & Andrew Gonzalez & J. Emmett Duffy & Lars Gamfeldt & Mary I. O’Connor, 2012. "A global synthesis reveals biodiversity loss as a major driver of ecosystem change," Nature, Nature, vol. 486(7401), pages 105-108, June.
    2. Michel Loreau & Andy Hector, 2001. "Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 412(6842), pages 72-76, July.
    3. K. Ann Bybee-Finley & Matthew R. Ryan, 2018. "Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes," Agriculture, MDPI, vol. 8(6), pages 1-24, June.
    4. Dhruba Dhakal & M. Anowarul Islam, 2018. "Grass-Legume Mixtures for Improved Soil Health in Cultivated Agroecosystem," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    5. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    6. Chen Chen & Han Y. H. Chen & Xinli Chen & Zhiqun Huang, 2019. "Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    3. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jonathan S. Lefcheck & Graham J. Edgar & Rick D. Stuart-Smith & Amanda E. Bates & Conor Waldock & Simon J. Brandl & Stuart Kininmonth & Scott D. Ling & J. Emmett Duffy & Douglas B. Rasher & Aneil F. A, 2021. "Species richness and identity both determine the biomass of global reef fish communities," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    8. Gersch Inka, 2018. "Producer organizations and contract farming: a comparative study of smallholders’ market strategies in South India," ZFW – Advances in Economic Geography, De Gruyter, vol. 62(1), pages 14-29, March.
    9. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    10. Clément, Rigal & Tuan, Duong & Cuong, Vo & Le Van, Bon & Trung, Hoang quôc & Long, Chau Thi Minh, 2023. "Transitioning from Monoculture to Mixed Cropping Systems: The Case of Coffee, Pepper, and Fruit Trees in Vietnam," Ecological Economics, Elsevier, vol. 214(C).
    11. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    12. Asrat, Sinafikeh & Yesuf, Mahmud & Carlsson, Fredrik & Wale, Edilegnaw, 2009. "Farmers’ Preferences for Crop Variety Traits: Lessons for On-Farm Conservation and Technology Adoption," RFF Working Paper Series dp-09-15-efd, Resources for the Future.
    13. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    14. Bernhard Dalheimer & Christoph Kubitza & Bernhard Brümmer, 2022. "Technical efficiency and farmland expansion: Evidence from oil palm smallholders in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1364-1387, August.
    15. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    16. Eva M. Murgado-Armenteros & María Gutierrez-Salcedo & Francisco José Torres-Ruiz, 2020. "The Concern about Biodiversity as a Criterion for the Classification of the Sustainable Consumer: A Cross-Cultural Approach," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    17. David M Costello & Konrad J Kulacki & Mary E McCarthy & Scott D Tiegs & Bradley J Cardinale, 2018. "Ranking stressor impacts on periphyton structure and function with mesocosm experiments and environmental-change forecasts," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    18. Stephen C. L. Watson & Adrian C. Newton, 2018. "Dependency of Businesses on Flows of Ecosystem Services: A Case Study from the County of Dorset, UK," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    19. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    20. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5689-:d:557605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.