IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240370.html
   My bibliography  Save this article

Predicting hypertension using machine learning: Findings from Qatar Biobank Study

Author

Listed:
  • Latifa A AlKaabi
  • Lina S Ahmed
  • Maryam F Al Attiyah
  • Manar E Abdel-Rahman

Abstract

Background and objective: Hypertension, a global burden, is associated with several risk factors and can be treated by lifestyle modifications and medications. Prediction and early diagnosis is important to prevent related health complications. The objective is to construct and compare predictive models to identify individuals at high risk of developing hypertension without the need of invasive clinical procedures. Methods: This is a cross-sectional study using 987 records of Qataris and long-term residents aged 18+ years from Qatar Biobank. Percentages were used to summarize data and chi-square tests to assess associations. Predictive models of hypertension were constructed and compared using three supervised machine learning algorithms: decision tree, random forest, and logistics regression using 5-fold cross-validation. The performance of algorithms was assessed using accuracy, positive predictive value (PPV), sensitivity, F-measure, and area under the receiver operating characteristic curve (AUC). Stata and Weka were used for analysis. Results: Age, gender, education level, employment, tobacco use, physical activity, adequate consumption of fruits and vegetables, abdominal obesity, history of diabetes, history of high cholesterol, and mother’s history high blood pressure were important predictors of hypertension. All algorithms showed more or less similar performances: Random forest (accuracy = 82.1%, PPV = 81.4%, sensitivity = 82.1%), logistic regression (accuracy = 81.1%, PPV = 80.1%, sensitivity = 81.1%) and decision tree (accuracy = 82.1%, PPV = 81.2%, sensitivity = 82.1%. In terms of AUC, compared to logistic regression, while random forest performed similarly, decision tree had a significantly lower discrimination ability (p-value

Suggested Citation

  • Latifa A AlKaabi & Lina S Ahmed & Maryam F Al Attiyah & Manar E Abdel-Rahman, 2020. "Predicting hypertension using machine learning: Findings from Qatar Biobank Study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0240370
    DOI: 10.1371/journal.pone.0240370
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240370
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240370&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ali Wadal & Tusneem Ahmed Elhassan & Hajer Ahmed Zein & Manar Elsheikh Abdel-Rahman & Ahmed Hassan Fahal, 2016. "Predictors of Post-operative Mycetoma Recurrence Using Machine-Learning Algorithms: The Mycetoma Research Center Experience," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(10), pages 1-11, October.
    2. Justin B Echouffo-Tcheugui & G David Batty & Mika Kivimäki & Andre P Kengne, 2013. "Risk Models to Predict Hypertension: A Systematic Review," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majed Bin Othayman & Abdulrahim Meshari & John Mulyata & Yaw Debrah, 2021. "Challenges Experienced by Public Higher Education Institutions of Learning in the Implementation of Training and Development: A Case Study of Saudi Arabian Higher Education," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 10(2), pages 1-36, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongdong Sun & Jielin Liu & Lei Xiao & Ya Liu & Zuoguang Wang & Chuang Li & Yongxin Jin & Qiong Zhao & Shaojun Wen, 2017. "Recent development of risk-prediction models for incident hypertension: An updated systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
    2. Michael Lebenbaum & Osvaldo Espin-Garcia & Yi Li & Laura C Rosella, 2018. "Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
    3. Mehdi Bamorovat & Iraj Sharifi & Esmat Rashedi & Alireza Shafiian & Fatemeh Sharifi & Ahmad Khosravi & Amirhossein Tahmouresi, 2021. "A novel diagnostic and prognostic approach for unresponsive patients with anthroponotic cutaneous leishmaniasis using artificial neural networks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    4. Junghye Lee & Ryeok-Hwan Kwon & Hyung Woo Kim & Sung-Hong Kang & Kwang-Jae Kim & Chi-Hyuck Jun, 2018. "A Data-Driven Procedure of Providing a Health Promotion Program for Hypertension Prevention," Service Science, INFORMS, vol. 10(3), pages 289-301, September.
    5. Gaojun Cai & Bifeng Zhang & Weijin Weng & Ganwei Shi & Sheliang Xue & Yanbin Song & Chunyan Ma, 2014. "E-Selectin Gene Polymorphisms and Essential Hypertension in Asian Population: An Updated Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.