IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0067370.html
   My bibliography  Save this article

Risk Models to Predict Hypertension: A Systematic Review

Author

Listed:
  • Justin B Echouffo-Tcheugui
  • G David Batty
  • Mika Kivimäki
  • Andre P Kengne

Abstract

Background: As well as being a risk factor for cardiovascular disease, hypertension is also a health condition in its own right. Risk prediction models may be of value in identifying those individuals at risk of developing hypertension who are likely to benefit most from interventions. Methods and Findings: To synthesize existing evidence on the performance of these models, we searched MEDLINE and EMBASE; examined bibliographies of retrieved articles; contacted experts in the field; and searched our own files. Dual review of identified studies was conducted. Included studies had to report on the development, validation, or impact analysis of a hypertension risk prediction model. For each publication, information was extracted on study design and characteristics, predictors, model discrimination, calibration and reclassification ability, validation and impact analysis. Eleven studies reporting on 15 different hypertension prediction risk models were identified. Age, sex, body mass index, diabetes status, and blood pressure variables were the most common predictor variables included in models. Most risk models had acceptable-to-good discriminatory ability (C-statistic>0.70) in the derivation sample. Calibration was less commonly assessed, but overall acceptable. Two hypertension risk models, the Framingham and Hopkins, have been externally validated, displaying acceptable-to-good discrimination, and C-statistic ranging from 0.71 to 0.81. Lack of individual-level data precluded analyses of the risk models in subgroups. Conclusions: The discrimination ability of existing hypertension risk prediction tools is acceptable, but the impact of using these tools on prescriptions and outcomes of hypertension prevention is unclear.

Suggested Citation

  • Justin B Echouffo-Tcheugui & G David Batty & Mika Kivimäki & Andre P Kengne, 2013. "Risk Models to Predict Hypertension: A Systematic Review," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0067370
    DOI: 10.1371/journal.pone.0067370
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067370
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0067370&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0067370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongdong Sun & Jielin Liu & Lei Xiao & Ya Liu & Zuoguang Wang & Chuang Li & Yongxin Jin & Qiong Zhao & Shaojun Wen, 2017. "Recent development of risk-prediction models for incident hypertension: An updated systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
    2. Gaojun Cai & Bifeng Zhang & Weijin Weng & Ganwei Shi & Sheliang Xue & Yanbin Song & Chunyan Ma, 2014. "E-Selectin Gene Polymorphisms and Essential Hypertension in Asian Population: An Updated Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    3. Latifa A AlKaabi & Lina S Ahmed & Maryam F Al Attiyah & Manar E Abdel-Rahman, 2020. "Predicting hypertension using machine learning: Findings from Qatar Biobank Study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    4. Junghye Lee & Ryeok-Hwan Kwon & Hyung Woo Kim & Sung-Hong Kang & Kwang-Jae Kim & Chi-Hyuck Jun, 2018. "A Data-Driven Procedure of Providing a Health Promotion Program for Hypertension Prevention," Service Science, INFORMS, vol. 10(3), pages 289-301, September.
    5. Michael Lebenbaum & Osvaldo Espin-Garcia & Yi Li & Laura C Rosella, 2018. "Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0067370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.