IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191169.html
   My bibliography  Save this article

Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)

Author

Listed:
  • Michael Lebenbaum
  • Osvaldo Espin-Garcia
  • Yi Li
  • Laura C Rosella

Abstract

Background: Given the dramatic rise in the prevalence of obesity, greater focus on prevention is necessary. We sought to develop and validate a population risk tool for obesity to inform prevention efforts. Methods: We developed the Obesity Population Risk Tool (OPoRT) using the longitudinal National Population Health Survey and sex-specific Generalized Estimating Equations to predict the 10-year risk of obesity among adults 18 and older. The model was validated using a bootstrap approach accounting for the survey design. Model performance was measured by the Brier statistic, discrimination was measured by the C-statistic, and calibration was assessed using the Hosmer-Lemeshow Goodness of Fit Chi Square (HL χ2). Results: Predictive factors included baseline body mass index, age, time and their interactions, smoking status, living arrangements, education, alcohol consumption, physical activity, and ethnicity. OPoRT showed good performance for males and females (Brier 0.118 and 0.095, respectively), excellent discrimination (C statistic ≥ 0.89) and achieved calibration (HL χ2

Suggested Citation

  • Michael Lebenbaum & Osvaldo Espin-Garcia & Yi Li & Laura C Rosella, 2018. "Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0191169
    DOI: 10.1371/journal.pone.0191169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191169
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne von Ruesten & Annika Steffen & Anna Floegel & Daphne L van der A & Giovanna Masala & Anne Tjønneland & Jytte Halkjaer & Domenico Palli & Nicholas J Wareham & Ruth J F Loos & Thorkild I A Sørensen, 2011. "Trend in Obesity Prevalence in European Adult Cohort Populations during Follow-up since 1996 and Their Predictions to 2015," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Justin B Echouffo-Tcheugui & G David Batty & Mika Kivimäki & Andre P Kengne, 2013. "Risk Models to Predict Hypertension: A Systematic Review," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    3. Margaret Pepe & Holly Janes & Gary Longton & Wendy Leisenring & Polly Newcomb, 2004. "Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic or Prognostic Marker," UW Biostatistics Working Paper Series 1035, Berkeley Electronic Press.
    4. Walter Bouwmeester & Nicolaas P A Zuithoff & Susan Mallett & Mirjam I Geerlings & Yvonne Vergouwe & Ewout W Steyerberg & Douglas G Altman & Karel G M Moons, 2012. "Reporting and Methods in Clinical Prediction Research: A Systematic Review," PLOS Medicine, Public Library of Science, vol. 9(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Ghosh & Michael S. Sabel, 2022. "A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 363-379, December.
    2. Anna-Karin Ivert & Marie Torstensson Levander & Juan Merlo, 2013. "Adolescents' Utilisation of Psychiatric Care, Neighbourhoods and Neighbourhood Socioeconomic Deprivation: A Multilevel Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    3. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    4. Thomas P A Debray & Karel G M Moons & Ghada Mohammed Abdallah Abo-Zaid & Hendrik Koffijberg & Richard David Riley, 2013. "Individual Participant Data Meta-Analysis for a Binary Outcome: One-Stage or Two-Stage?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    5. Holly Janes & Margaret S. Pepe, 2008. "Matching in Studies of Classification Accuracy: Implications for Analysis, Efficiency, and Assessment of Incremental Value," Biometrics, The International Biometric Society, vol. 64(1), pages 1-9, March.
    6. Carlos A Labarrere & John R Woods & James W Hardin & Beate R Jaeger & Marian Zembala & Mario C Deng & Ghassan S Kassab, 2014. "Early Inflammatory Markers Are Independent Predictors of Cardiac Allograft Vasculopathy in Heart-Transplant Recipients," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-18, December.
    7. Diego Tomassi & Liliana Forzani & Efstathia Bura & Ruth Pfeiffer, 2017. "Sufficient dimension reduction for censored predictors," Biometrics, The International Biometric Society, vol. 73(1), pages 220-231, March.
    8. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    9. Ben Van Calster & Ewout W. Steyerberg & Ralph B. D’Agostino Sr & Michael J. Pencina, 2014. "Sensitivity and Specificity Can Change in Opposite Directions When New Predictive Markers Are Added to Risk Models," Medical Decision Making, , vol. 34(4), pages 513-522, May.
    10. Kenichi Hayashi & Shinto Eguchi, 2024. "A new integrated discrimination improvement index via odds," Statistical Papers, Springer, vol. 65(8), pages 4971-4990, October.
    11. Paul Bach & Christine Wallisch & Nadja Klein & Lorena Hafermann & Willi Sauerbrei & Ewout W Steyerberg & Georg Heinze & Geraldine Rauch & for topic group 2 of the STRATOS initiative, 2020. "Systematic review of education and practical guidance on regression modeling for medical researchers who lack a strong statistical background: Study protocol," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-10, December.
    12. Tianle Chen & Yuanjia Wang & Huaihou Chen & Karen Marder & Donglin Zeng, 2014. "Targeted Local Support Vector Machine for Age-Dependent Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1174-1187, September.
    13. Anna Persmark & Maria Wemrell & Sofia Zettermark & George Leckie & S V Subramanian & Juan Merlo, 2019. "Precision public health: Mapping socioeconomic disparities in opioid dispensations at Swedish pharmacies by Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA)," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-21, August.
    14. Barbieri, Paolo Nicola, 2017. "Modelling body weight, dieting and obesity traps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 139-146.
    15. Van Hoye, Aurélie & Vandoorne, Chantal & Absil, Gaetan & Lecomte, Flore & Fallon, Catherine & Lombrail, Pierre & Vuillemin, Anne, 2019. "Health enhancing physical activity in all policies? Comparison of national public actors between France and Belgium," Health Policy, Elsevier, vol. 123(3), pages 327-332.
    16. Michael King & Louise Marston & Igor Švab & Heidi-Ingrid Maaroos & Mirjam I Geerlings & Miguel Xavier & Vicente Benjamin & Francisco Torres-Gonzalez & Juan Angel Bellon-Saameno & Danica Rotar & Anu Al, 2011. "Development and Validation of a Risk Model for Prediction of Hazardous Alcohol Consumption in General Practice Attendees: The PredictAL Study," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    17. Fagrell Trygg, Nadja & Månsdotter, Anna & Gustafsson, Per E., 2021. "Intersectional inequalities in mental health across multiple dimensions of inequality in the Swedish adult population," Social Science & Medicine, Elsevier, vol. 283(C).
    18. Taro Takeshima & Yosuke Yamamoto & Yoshinori Noguchi & Nobuyuki Maki & Koichiro Gibo & Yukio Tsugihashi & Asako Doi & Shingo Fukuma & Shin Yamazaki & Eiji Kajii & Shunichi Fukuhara, 2016. "Identifying Patients with Bacteremia in Community-Hospital Emergency Rooms: A Retrospective Cohort Study," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-17, March.
    19. Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.
    20. Vanya Van Belle & Ben Van Calster, 2015. "Visualizing Risk Prediction Models," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.