IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0238838.html
   My bibliography  Save this article

Executable biochemical space for specification and analysis of biochemical systems

Author

Listed:
  • Matej Troják
  • David Šafránek
  • Lukrécia Mertová
  • Luboš Brim

Abstract

Computational systems biology provides multiple formalisms for modelling of biochemical processes among which the rule-based approach is one of the most suitable. Its main advantage is a compact and precise mechanistic description of complex processes. However, state-of-the-art rule-based languages still suffer several shortcomings that limit their use in practice. In particular, the elementary (low-level) syntax and semantics of rule-based languages complicate model construction and maintenance for users outside computer science. On the other hand, mathematical models based on differential equations (ODEs) still make the most typical used modelling framework. In consequence, robust re-interpretation and integration of models are difficult, thus making the systems biology paradigm technically challenging. Though several high-level languages have been developed at the top of rule-based principles, none of them provides a satisfactory and complete solution for semi-automated description and annotation of heterogeneous biophysical processes integrated at the cellular level. We present the second generation of a rule-based language called Biochemical Space Language (BCSL) that combines the advantages of different approaches and thus makes an effort to overcome several problems of existing solutions. BCSL relies on the formal basis of the rule-based methodology while preserving user-friendly syntax of plain chemical equations. BCSL combines the following aspects: the level of abstraction that hides structural and quantitative details but yet gives a precise mechanistic view of systems dynamics; executable semantics allowing formal analysis and consistency checking at the level of the language; universality allowing the integration of different biochemical mechanisms; scalability and compactness of the specification; hierarchical specification and composability of chemical entities; and support for genome-scale annotation.

Suggested Citation

  • Matej Troják & David Šafránek & Lukrécia Mertová & Luboš Brim, 2020. "Executable biochemical space for specification and analysis of biochemical systems," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-24, September.
  • Handle: RePEc:plo:pone00:0238838
    DOI: 10.1371/journal.pone.0238838
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238838
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0238838&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0238838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Ulrike Münzner & Edda Klipp & Marcus Krantz, 2019. "A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    2. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    3. Niki Vermeulen, 2018. "The choreography of a new research field: Aggregation, circulation and oscillation," Environment and Planning A, , vol. 50(8), pages 1764-1784, November.
    4. Armaghan W Naik & Joshua D Kangas & Christopher J Langmead & Robert F Murphy, 2013. "Efficient Modeling and Active Learning Discovery of Biological Responses," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    5. Joep P J Schmitz & Jeroen A L Jeneson & Joep W M van Oorschot & Jeanine J Prompers & Klaas Nicolay & Peter A J Hilbers & Natal A W van Riel, 2012. "Prediction of Muscle Energy States at Low Metabolic Rates Requires Feedback Control of Mitochondrial Respiratory Chain Activity by Inorganic Phosphate," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    6. Marco S Nobile & Paolo Cazzaniga & Daniela Besozzi & Dario Pescini & Giancarlo Mauri, 2014. "cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-20, March.
    7. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    8. Markus J. Buehler & Theodor Ackbarow, 2008. "Nanomechanical strength mechanisms of hierarchical biological materials and tissues," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(6), pages 595-607.
    9. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    10. Yohei Murakami, 2014. "Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    11. Joshua Russell-Buckland & Christopher P Barnes & Ilias Tachtsidis, 2019. "A Bayesian framework for the analysis of systems biology models of the brain," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-29, April.
    12. Wenpin Hou & Takeyuki Tamura & Wai-Ki Ching & Tatsuya Akutsu, 2016. "Finding And Analyzing The Minimum Set Of Driver Nodes In Control Of Boolean Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-32, May.
    13. Joly, Marcel & Rondó, Patrícia H.C., 2017. "The future of computational biomedicine: Complex systems thinking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 1-27.
    14. Gianluca D’Addese & Martina Casari & Roberto Serra & Marco Villani, 2021. "A Fast and Effective Method to Identify Relevant Sets of Variables in Complex Systems," Mathematics, MDPI, vol. 9(9), pages 1-27, April.
    15. Leonard Schmiester & Yannik Schälte & Frank T Bergmann & Tacio Camba & Erika Dudkin & Janine Egert & Fabian Fröhlich & Lara Fuhrmann & Adrian L Hauber & Svenja Kemmer & Polina Lakrisenko & Carolin Loo, 2021. "PEtab—Interoperable specification of parameter estimation problems in systems biology," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-10, January.
    16. Christian L Barrett & Bernhard O Palsson, 2006. "Iterative Reconstruction of Transcriptional Regulatory Networks: An Algorithmic Approach," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    17. Zandi-Mehran, Nazanin & Panahi, Shirin & Hosseini, Zahra & Hashemi Golpayegani, Seyed Mohammad Reza & Jafari, Sajad, 2020. "One dimensional map-based neuron model: A phase space interpretation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Pier Luigi Sacco & Alex Arenas & Manlio De Domenico, 2022. "The resilience of the multirelational structure of geopolitical treaties is critically linked to past colonial world order and offshore fiscal havens," Papers 2203.00618, arXiv.org.
    19. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    20. Mark Read & Paul S. Andrews & Jon Timmis & Vipin Kumar, 2011. "Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 67-86, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0238838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.