IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v50y2018i8p1764-1784.html
   My bibliography  Save this article

The choreography of a new research field: Aggregation, circulation and oscillation

Author

Listed:
  • Niki Vermeulen

Abstract

This paper analyses how a group of researchers from different disciplines has been able to form creative collaborative spaces to model life together. Making mathematical models of life is a new way of creating biological knowledge – called systems biology – that ultimately aims to revolutionise medicine, by making it more effective through personalisation. By conceptualizing this interdisciplinary effort to create a new research field as a Scientific/Intellectual Movement, I analyse the entanglement of epistemic and social transformations, discussing how systems biology moved from the periphery towards the center of biology. Thereby, I am turning the focus on the spatial dimensions of Scientific/Intellectual Movements. More specifically, I introduce a topological approach detailing three interrelated spatial movements: aggregation, circulation and oscillation that together constitute the choreography of systems biology. They show how some strong, dispersed, local centers have effectively raised funds to build human capacity, organisations and infrastructures, while creating international networks. Through interaction with science policy makers, a global circulation of policies took place, stimulating the building of collaborative centers for systems biology, while the ending of funding programmes is now causing fragmentation again. As such, this paper argues that the choreography of systems biology as a Scientific/Intellectual Movement exemplifies how spatial (re-)configurations are fundamental to transformations in the knowledge landscape and the institutionalization of creativity.

Suggested Citation

  • Niki Vermeulen, 2018. "The choreography of a new research field: Aggregation, circulation and oscillation," Environment and Planning A, , vol. 50(8), pages 1764-1784, November.
  • Handle: RePEc:sae:envira:v:50:y:2018:i:8:p:1764-1784
    DOI: 10.1177/0308518X17725317
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0308518X17725317
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0308518X17725317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Hautala, Johanna & Jauhiainen, Jussi S., 2014. "Spatio-temporal processes of knowledge creation," Research Policy, Elsevier, vol. 43(4), pages 655-668.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johanna Hautala & Oliver Ibert, 2018. "Creativity in arts and sciences: Collective processes from a spatial perspective," Environment and Planning A, , vol. 50(8), pages 1688-1696, November.
    2. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    3. Mark Read & Paul S. Andrews & Jon Timmis & Vipin Kumar, 2011. "Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 67-86, May.
    4. Hanna Heino, 2021. "Knowledge creation and mobility in and through futures workshops," Futures & Foresight Science, John Wiley & Sons, vol. 3(1), March.
    5. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    6. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.
    7. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    8. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    9. Ibert, Oliver & Müller, Felix C., 2015. "Network dynamics in constellations of cultural differences: Relational distance in innovation processes in legal services and biotechnology," Research Policy, Elsevier, vol. 44(1), pages 181-194.
    10. Yuksel Bayraktar & Esme Isik & Ibrahim Isik & Ayfer Ozyilmaz & Metin Toprak & Fatma Kahraman Guloglu & Serdar Aydin, 2022. "Analyzing of Alzheimer’s Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    11. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    12. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    13. Matthew A Hibbs & Chad L Myers & Curtis Huttenhower & David C Hess & Kai Li & Amy A Caudy & Olga G Troyanskaya, 2009. "Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-12, March.
    14. Alan A Cohen & Emmanuel Milot & Qing Li & Patrick Bergeron & Roxane Poirier & Francis Dusseault-Bélanger & Tamàs Fülöp & Maxime Leroux & Véronique Legault & E Jeffrey Metter & Linda P Fried & Luigi Fe, 2015. "Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    15. Vick, Thais Elaine & Nagano, Marcelo Seido & Popadiuk, Silvio, 2015. "Information culture and its influences in knowledge creation: Evidence from university teams engaged in collaborative innovation projects," International Journal of Information Management, Elsevier, vol. 35(3), pages 292-298.
    16. Armaghan W Naik & Joshua D Kangas & Christopher J Langmead & Robert F Murphy, 2013. "Efficient Modeling and Active Learning Discovery of Biological Responses," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    17. Joep P J Schmitz & Jeroen A L Jeneson & Joep W M van Oorschot & Jeanine J Prompers & Klaas Nicolay & Peter A J Hilbers & Natal A W van Riel, 2012. "Prediction of Muscle Energy States at Low Metabolic Rates Requires Feedback Control of Mitochondrial Respiratory Chain Activity by Inorganic Phosphate," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    18. Marco S Nobile & Paolo Cazzaniga & Daniela Besozzi & Dario Pescini & Giancarlo Mauri, 2014. "cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-20, March.
    19. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    20. Markus J. Buehler & Theodor Ackbarow, 2008. "Nanomechanical strength mechanisms of hierarchical biological materials and tissues," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(6), pages 595-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:50:y:2018:i:8:p:1764-1784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.