IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234663.html
   My bibliography  Save this article

Studying health-related internet and mobile device use using web logs and smartphone records

Author

Listed:
  • Ruben L Bach
  • Alexander Wenz

Abstract

Many people use the internet to seek information that will help them understand their body and their health. Motivations for such behaviors are numerous. For example, users may wish to figure out a medical condition by searching for symptoms they experience. Similarly, they may seek more information on how to treat conditions they have been diagnosed with or seek resources on how to live a healthy life. With the ubiquitous availability of the internet, searching and finding relevant information is easier than ever before and a widespread phenomenon. To understand how people use the internet for health-related information, we use data from a sample of 1,959 internet users. A unique combination of data containing four months of users’ browsing histories and mobile application use on computers and mobile devices allows us to study which health websites they visited, what information they searched for and which health applications they used. Survey data inform us about users’ socio-demographic background, medical conditions and other health-related behaviors. Results show that women, young users, users with a university education and nonsmokers are most likely to use the internet and mobile applications for health-related purposes. On search engines, internet users most frequently search for pharmacies, symptoms of medical conditions and pain. Moreover, users seem most interested in information on how to live a healthy life, alternative medicine, mental health and women’s health. With this study, we extend the field’s understanding of who seeks and consumes health information online, what users look for as well as how individuals use mobile applications to monitor their health. Moreover, we contribute to methodological research by exploring new sources of data for understanding humans, their preferences and behaviors.

Suggested Citation

  • Ruben L Bach & Alexander Wenz, 2020. "Studying health-related internet and mobile device use using web logs and smartphone records," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0234663
    DOI: 10.1371/journal.pone.0234663
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234663
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234663&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florence Jusot & Myriam Khlat, 2013. "The role of time and risk preferences in smoking inequalities: A population-based study," Post-Print hal-01526058, HAL.
    2. repec:dau:papers:123456789/11397 is not listed on IDEAS
    3. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    4. Manierre, Matthew J., 2015. "Gaps in knowledge: Tracking and explaining gender differences in health information seeking," Social Science & Medicine, Elsevier, vol. 128(C), pages 151-158.
    5. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacopo Ciaffi & Riccardo Meliconi & Maria Paola Landini & Luana Mancarella & Veronica Brusi & Cesare Faldini & Francesco Ursini, 2021. "Seasonality of Back Pain in Italy: An Infodemiology Study," IJERPH, MDPI, vol. 18(3), pages 1-10, February.
    2. Agata Balińska & Ewa Jaska & Agnieszka Werenowska, 2021. "The Role of Eco-Apps in Encouraging Pro-Environmental Behavior of Young People Studying in Poland," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Krzysztof Płaciszewski & Waldemar Wierzba & Janusz Ostrowski & Jarosław Pinkas & Mateusz Jankowski, 2022. "Use of the Internet for Health Purposes—A National Web-Based Cross-Sectional Survey among Adults in Poland," IJERPH, MDPI, vol. 19(23), pages 1-18, December.
    4. Russell Miller & Nicholas Doria-Anderson & Akira Shibanuma & Jennifer Lisa Sakamoto & Aya Yumino & Masamine Jimba, 2021. "Evaluating Local Multilingual Health Care Information Environments on the Internet: A Pilot Study," IJERPH, MDPI, vol. 18(13), pages 1-12, June.
    5. Ruben L. Bach & Christoph Kern & Denis Bonnay & Luc Kalaora, 2022. "Understanding political news media consumption with digital trace data and natural language processing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 246-269, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Resce, Giuliano & Maynard, Diana, 2018. "What matters most to people around the world? Retrieving Better Life Index priorities on Twitter," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 61-75.
    3. Paolo Giardullo, 2016. "Does ‘bigger’ mean ‘better’? Pitfalls and shortcuts associated with big data for social research," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 529-547, March.
    4. Enrico di Bella & Lucia Leporatti & Filomena Maggino, 2018. "Big Data and Social Indicators: Actual Trends and New Perspectives," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(3), pages 869-878, February.
    5. Brenda Curtis & Salvatore Giorgi & Anneke E K Buffone & Lyle H Ungar & Robert D Ashford & Jessie Hemmons & Dan Summers & Casey Hamilton & H Andrew Schwartz, 2018. "Can Twitter be used to predict county excessive alcohol consumption rates?," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    6. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    7. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    8. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    10. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    11. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    12. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    13. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    14. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    15. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    16. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    17. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    18. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    19. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    20. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.