Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0233855
Download full text from publisher
References listed on IDEAS
- Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
- Declan Butler, 2013. "When Google got flu wrong," Nature, Nature, vol. 494(7436), pages 155-156, February.
- Soo Beom Choi & Juhyeon Kim & Insung Ahn, 2019. "Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
- Arora, Vishal S. & McKee, Martin & Stuckler, David, 2019. "Google Trends: Opportunities and limitations in health and health policy research," Health Policy, Elsevier, vol. 123(3), pages 338-341.
- Eui-Ki Kim & Jong Hyeon Seok & Jang Seok Oh & Hyong Woo Lee & Kyung Hyun Kim, 2013. "Use of Hangeul Twitter to Track and Predict Human Influenza Infection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-11, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Daniel E. O'Leary & Veda C. Storey, 2020. "A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 151-158, July.
- Hongxin Xue & Yanping Bai & Hongping Hu & Haijian Liang, 2019. "Regional level influenza study based on Twitter and machine learning method," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-23, April.
- Soo Beom Choi & Juhyeon Kim & Insung Ahn, 2019. "Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
- Shu-Heng Chen & Ragupathy Venkatachalam, 2017. "Information aggregation and computational intelligence," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 231-252, June.
- Krzysztof Bartosz Klimiuk & Dawid Krefta & Karol Kołkowski & Karol Flisikowski & Małgorzata Sokołowska-Wojdyło & Łukasz Balwicki, 2022. "Seasonal Patterns and Trends in Dermatoses in Poland," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
- Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
- Xiao-Dong Yang & Hong-Li Li & Yue-E Cao, 2021. "Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location," IJERPH, MDPI, vol. 18(2), pages 1-13, January.
- Artur Strzelecki, 2020. "Google Medical Update: Why Is the Search Engine Decreasing Visibility of Health and Medical Information Websites?," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
- Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2016. "Success Is Something to Sneeze At: Influenza Mortality in Cities that Participate in the Super Bowl," American Journal of Health Economics, MIT Press, vol. 2(1), pages 125-143, January.
- Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
- Oren Barnea & Amit Huppert & Guy Katriel & Lewi Stone, 2014. "Spatio-Temporal Synchrony of Influenza in Cities across Israel: The “Israel Is One City” Hypothesis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
- Khatri, Vijay, 2016. "Managerial work in the realm of the digital universe: The role of the data triad," Business Horizons, Elsevier, vol. 59(6), pages 673-688.
- Gamze Bayın Donar & Seda Aydan, 2022. "Association of COVID‐19 with lifestyle behaviours and socio‐economic variables in Turkey: An analysis of Google Trends," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 281-300, January.
- Mark Huberty, 2015. "Awaiting the Second Big Data Revolution: From Digital Noise to Value Creation," Journal of Industry, Competition and Trade, Springer, vol. 15(1), pages 35-47, March.
- Baki Cakici & Pedro Sanches, 2014. "Detecting the Visible: The Discursive Construction of Health Threats in a Syndromic Surveillance System Design," Societies, MDPI, vol. 4(3), pages 1-15, July.
- Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
- Alexander Cardazzi & Brad Humphreys & Jane E. Ruseski & Brian P. Soebbing & Nicholas Watanabe, 2020. "Professional Sporting Events Increase Seasonal Influenza Mortality in US Cities," Working Papers 20-08, Department of Economics, West Virginia University.
- Guoliang Zhang & Shuqiong Huang & Qionghong Duan & Wen Shu & Yongchun Hou & Shiyu Zhu & Xiaoping Miao & Shaofa Nie & Sheng Wei & Nan Guo & Hua Shan & Yihua Xu, 2013. "Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
- Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233855. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.