Regional level influenza study based on Twitter and machine learning method
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0215600
Download full text from publisher
References listed on IDEAS
- Tatiana Petukhova & Davor Ojkic & Beverly McEwen & Rob Deardon & Zvonimir Poljak, 2018. "Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
- Declan Butler, 2013. "When Google got flu wrong," Nature, Nature, vol. 494(7436), pages 155-156, February.
- Eui-Ki Kim & Jong Hyeon Seok & Jang Seok Oh & Hyong Woo Lee & Kyung Hyun Kim, 2013. "Use of Hangeul Twitter to Track and Predict Human Influenza Infection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-11, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Soo Beom Choi & Insung Ahn, 2020. "Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Shu-Heng Chen & Ragupathy Venkatachalam, 2017. "Information aggregation and computational intelligence," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 231-252, June.
- Krzysztof Bartosz Klimiuk & Dawid Krefta & Karol Kołkowski & Karol Flisikowski & Małgorzata Sokołowska-Wojdyło & Łukasz Balwicki, 2022. "Seasonal Patterns and Trends in Dermatoses in Poland," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
- Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
- Khatri, Vijay, 2016. "Managerial work in the realm of the digital universe: The role of the data triad," Business Horizons, Elsevier, vol. 59(6), pages 673-688.
- Mark Huberty, 2015. "Awaiting the Second Big Data Revolution: From Digital Noise to Value Creation," Journal of Industry, Competition and Trade, Springer, vol. 15(1), pages 35-47, March.
- Baki Cakici & Pedro Sanches, 2014. "Detecting the Visible: The Discursive Construction of Health Threats in a Syndromic Surveillance System Design," Societies, MDPI, vol. 4(3), pages 1-15, July.
- Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
- Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
- Huberty, Mark, 2015. "Can we vote with our tweet? On the perennial difficulty of election forecasting with social media," International Journal of Forecasting, Elsevier, vol. 31(3), pages 992-1007.
- Rivera, Roberto, 2016. "A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data," Tourism Management, Elsevier, vol. 57(C), pages 12-20.
- F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
- Nataliya Shakhovska & Ivan Izonin & Nataliia Melnykova, 2021. "The Hierarchical Classifier for COVID-19 Resistance Evaluation," Data, MDPI, vol. 6(1), pages 1-17, January.
- Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
- Daniel Bjorkegren & Darrell Grissen, 2017. "Behavior Revealed in Mobile Phone Usage Predicts Loan Repayment," Papers 1712.05840, arXiv.org, revised Dec 2019.
- Arora, Vishal S. & McKee, Martin & Stuckler, David, 2019. "Google Trends: Opportunities and limitations in health and health policy research," Health Policy, Elsevier, vol. 123(3), pages 338-341.
- Jiachen Sun & Peter A. Gloor, 2021. "Assessing the Predictive Power of Online Social Media to Analyze COVID-19 Outbreaks in the 50 U.S. States," Future Internet, MDPI, vol. 13(7), pages 1-13, July.
- Daniel E. O'Leary & Veda C. Storey, 2020. "A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 151-158, July.
- Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0215600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.