IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0228016.html
   My bibliography  Save this article

A data-driven classification of 3D foot types by archetypal shapes based on landmarks

Author

Listed:
  • Aleix Alcacer
  • Irene Epifanio
  • M Victoria Ibáñez
  • Amelia Simó
  • Alfredo Ballester

Abstract

The taxonomy of foot shapes or other parts of the body is important, especially for design purposes. We propose a methodology based on archetypoid analysis (ADA) that overcomes the weaknesses of previous methodologies used to establish typologies. ADA is an objective, data-driven methodology that seeks extreme patterns, the archetypal profiles in the data. ADA also explains the data as percentages of the archetypal patterns, which makes this technique understandable and accessible even for non-experts. Clustering techniques are usually considered for establishing taxonomies, but we will show that finding the purest or most extreme patterns is more appropriate than using the central points returned by clustering techniques. We apply the methodology to an anthropometric database of 775 3D right foot scans representing the Spanish adult female and male population for footwear design. Each foot is described by a 5626 × 3 configuration matrix of landmarks. No multivariate features are used for establishing the taxonomy, but all the information gathered from the 3D scanning is employed. We use ADA for shapes described by landmarks. Women’s and men’s feet are analyzed separately. We have analyzed 3 archetypal feet for both men and women. These archetypal feet could not have been recovered using multivariate techniques.

Suggested Citation

  • Aleix Alcacer & Irene Epifanio & M Victoria Ibáñez & Amelia Simó & Alfredo Ballester, 2020. "A data-driven classification of 3D foot types by archetypal shapes based on landmarks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
  • Handle: RePEc:plo:pone00:0228016
    DOI: 10.1371/journal.pone.0228016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228016
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0228016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0228016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vinué, Guillermo & Epifanio, Irene & Alemany, Sandra, 2015. "Archetypoids: A new approach to define representative archetypal data," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 102-115.
    2. Helen Ryan-Stewart & James Faulkner & Simon Jobson, 2018. "The influence of somatotype on anaerobic performance," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-11, May.
    3. Vincenzo Viscosi & Andrea Cardini, 2011. "Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-20, October.
    4. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    5. Epifanio, Irene, 2016. "Functional archetype and archetypoid analysis," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 24-34.
    6. Manuel J. A. Eugster, 2012. "Performance Profiles based on Archetypal Athletes," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 12(1), pages 166-187, April.
    7. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    2. Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
    3. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    4. Irene Epifanio & María Victoria Ibáñez & Amelia Simó, 2018. "Archetypal shapes based on landmarks and extension to handle missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 705-735, September.
    5. Epifanio, Irene, 2016. "Functional archetype and archetypoid analysis," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 24-34.
    6. Klaus Wohlrabe & Sabine Gralka, 2020. "Using archetypoid analysis to classify institutions and faculties of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 159-179, April.
    7. Seiler, Christian & Wohlrabe, Klaus, 2013. "Archetypal scientists," Journal of Informetrics, Elsevier, vol. 7(2), pages 345-356.
    8. Vinué, Guillermo & Epifanio, Irene & Alemany, Sandra, 2015. "Archetypoids: A new approach to define representative archetypal data," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 102-115.
    9. Sabine Gralka & Klaus Wohlrabe, 2022. "Classifying top economists using archetypoid analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 29(14), pages 1342-1346, August.
    10. Vinué, Guillermo, 2017. "Anthropometry: An R Package for Analysis of Anthropometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i06).
    11. Ariel Madrigal & Tianyuan Lu & Larisa M. Soto & Hamed S. Najafabadi, 2024. "A unified model for interpretable latent embedding of multi-sample, multi-condition single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Luis Gutiérrez & Ramsés H. Mena & Carlos Díaz-Avalos, 2020. "Linear models for statistical shape analysis based on parametrized closed curves," Statistical Papers, Springer, vol. 61(3), pages 1213-1229, June.
    13. Stefan Weinert, 2012. "Diversity of the DAX30 Executive Board Members: Aspiration and Reality [Diversity der DAX30-Vorstände: Anspruch und Wirklichkeit]," Duesseldorf Working Papers in Applied Management and Economics 20, Duesseldorf University of Applied Sciences.
    14. Irene Epifanio & Vicent Gimeno & Ximo Gual-Arnau & M. Victoria Ibáñez-Gual, 2020. "A New Geometric Metric in the Shape and Size Space of Curves in R n," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    15. José Antonio Muñoz-Reyes & Marta Iglesias-Julios & Miguel Pita & Enrique Turiegano, 2015. "Facial Features: What Women Perceive as Attractive and What Men Consider Attractive," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    16. Vitale Nuzzo & Antonio Gatto & Giuseppe Montanaro, 2022. "Morphological Characterization of Some Local Varieties of Fig ( Ficus carica L.) Cultivated in Southern Italy," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    17. Aurea Grané & Alpha A. Sow-Barry, 2021. "Visualizing Profiles of Large Datasets of Weighted and Mixed Data," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    18. Tessier, Louis & Bijttebier, Jo & Marchand, Fleur & Baret, Philippe V., 2021. "Identifying the farming models underlying Flemish beef farmers' practices from an agroecological perspective with archetypal analysis," Agricultural Systems, Elsevier, vol. 187(C).
    19. Amro Daboul & Tatyana Ivanovska & Robin Bülow & Reiner Biffar & Andrea Cardini, 2018. "Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    20. Olalekan Agbolade & Azree Nazri & Razali Yaakob & Abdul Azim Ghani & Yoke Kqueen Cheah, 2020. "Morphometric approach to 3D soft-tissue craniofacial analysis and classification of ethnicity, sex, and age," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0228016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.