IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0197675.html
   My bibliography  Save this article

Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets

Author

Listed:
  • Amro Daboul
  • Tatyana Ivanovska
  • Robin Bülow
  • Reiner Biffar
  • Andrea Cardini

Abstract

Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'.

Suggested Citation

  • Amro Daboul & Tatyana Ivanovska & Robin Bülow & Reiner Biffar & Andrea Cardini, 2018. "Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
  • Handle: RePEc:plo:pone00:0197675
    DOI: 10.1371/journal.pone.0197675
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197675
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197675&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0197675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Viscosi & Andrea Cardini, 2011. "Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleix Alcacer & Irene Epifanio & M Victoria Ibáñez & Amelia Simó & Alfredo Ballester, 2020. "A data-driven classification of 3D foot types by archetypal shapes based on landmarks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    2. Irene Epifanio & María Victoria Ibáñez & Amelia Simó, 2018. "Archetypal shapes based on landmarks and extension to handle missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 705-735, September.
    3. Luis Gutiérrez & Ramsés H. Mena & Carlos Díaz-Avalos, 2020. "Linear models for statistical shape analysis based on parametrized closed curves," Statistical Papers, Springer, vol. 61(3), pages 1213-1229, June.
    4. José Antonio Muñoz-Reyes & Marta Iglesias-Julios & Miguel Pita & Enrique Turiegano, 2015. "Facial Features: What Women Perceive as Attractive and What Men Consider Attractive," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    5. Vitale Nuzzo & Antonio Gatto & Giuseppe Montanaro, 2022. "Morphological Characterization of Some Local Varieties of Fig ( Ficus carica L.) Cultivated in Southern Italy," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    6. Olalekan Agbolade & Azree Nazri & Razali Yaakob & Abdul Azim Ghani & Yoke Kqueen Cheah, 2020. "Morphometric approach to 3D soft-tissue craniofacial analysis and classification of ethnicity, sex, and age," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
    7. Andrew G Gardner & Jonathan N Fitz Gerald & John Menz & Kelly A Shepherd & Dianella G Howarth & Rachel S Jabaily, 2016. "Characterizing Floral Symmetry in the Core Goodeniaceae with Geometric Morphometrics," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.