IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v87y2015icp102-115.html
   My bibliography  Save this article

Archetypoids: A new approach to define representative archetypal data

Author

Listed:
  • Vinué, Guillermo
  • Epifanio, Irene
  • Alemany, Sandra

Abstract

The new concept archetypoids is introduced. Archetypoid analysis represents each observation in a dataset as a mixture of actual observations in the dataset, which are pure type or archetypoids. Unlike archetype analysis, archetypoids are real observations, not a mixture of observations. This is relevant when existing archetypal observations are needed, rather than fictitious ones. An algorithm is proposed to find them and some of their theoretical properties are introduced. It is also shown how they can be obtained when only dissimilarities between observations are known (features are unavailable). Archetypoid analysis is illustrated in two design problems and several examples, comparing them with the archetypes, the nearest observations to them and other unsupervised methods.

Suggested Citation

  • Vinué, Guillermo & Epifanio, Irene & Alemany, Sandra, 2015. "Archetypoids: A new approach to define representative archetypal data," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 102-115.
  • Handle: RePEc:eee:csdana:v:87:y:2015:i:c:p:102-115
    DOI: 10.1016/j.csda.2015.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000298
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugster, Manuel J.A. & Leisch, Friedrich, 2011. "Weighted and robust archetypal analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1215-1225, March.
    2. Eugster, Manuel J. A. & Leisch, Friedrich, 2009. "From Spider-Man to Hero — Archetypal Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i08).
    3. Manuel J. A. Eugster, 2012. "Performance Profiles based on Archetypal Athletes," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 12(1), pages 166-187, April.
    4. Seiler, Christian & Wohlrabe, Klaus, 2013. "Archetypal scientists," Journal of Informetrics, Elsevier, vol. 7(2), pages 345-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabine Gralka & Klaus Wohlrabe, 2022. "Classifying top economists using archetypoid analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 29(14), pages 1342-1346, August.
    2. Vinué, Guillermo, 2017. "Anthropometry: An R Package for Analysis of Anthropometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i06).
    3. Epifanio, Irene, 2016. "Functional archetype and archetypoid analysis," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 24-34.
    4. Klaus Wohlrabe & Sabine Gralka, 2020. "Using archetypoid analysis to classify institutions and faculties of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 159-179, April.
    5. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    6. Aurea Grané & Alpha A. Sow-Barry, 2021. "Visualizing Profiles of Large Datasets of Weighted and Mixed Data," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    7. Irene Epifanio & Vicent Gimeno & Ximo Gual-Arnau & M. Victoria Ibáñez-Gual, 2020. "A New Geometric Metric in the Shape and Size Space of Curves in R n," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    8. Aleix Alcacer & Irene Epifanio & M Victoria Ibáñez & Amelia Simó & Alfredo Ballester, 2020. "A data-driven classification of 3D foot types by archetypal shapes based on landmarks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    9. Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
    10. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    2. Epifanio, Irene, 2016. "Functional archetype and archetypoid analysis," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 24-34.
    3. Seiler, Christian & Wohlrabe, Klaus, 2013. "Archetypal scientists," Journal of Informetrics, Elsevier, vol. 7(2), pages 345-356.
    4. Irene Epifanio & María Victoria Ibáñez & Amelia Simó, 2018. "Archetypal shapes based on landmarks and extension to handle missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 705-735, September.
    5. Sjoerd Beugelsdijk & Hester van Herk & Robbert Maseland, 2022. "The Nature of Societal Conflict in Europe; an Archetypal Analysis of the Postmodern Cosmopolitan, Rural Traditionalist and Urban Precariat," Journal of Common Market Studies, Wiley Blackwell, vol. 60(6), pages 1701-1722, November.
    6. Abdul Suleman, 2017. "On ill-conceived initialization in archetypal analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 785-808, December.
    7. Firouzeh Noghrehchi & Jakub Stoklosa & Spiridon Penev, 2020. "Multiple imputation and functional methods in the presence of measurement error and missingness in explanatory variables," Computational Statistics, Springer, vol. 35(3), pages 1291-1317, September.
    8. Sabine Gralka & Klaus Wohlrabe, 2022. "Classifying top economists using archetypoid analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 29(14), pages 1342-1346, August.
    9. Christian Seiler & Klaus Wohlrabe, 2012. "Archetypal Analysis: Ein neuer Ansatz zur Klassifizierung von Wissenschaftlern," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(22), pages 07-12, November.
    10. Klaus Wohlrabe & Sabine Gralka, 2020. "Using archetypoid analysis to classify institutions and faculties of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 159-179, April.
    11. Alexandra Baumann & Klaus Wohlrabe, 2020. "Where have all the working papers gone? Evidence from four major economics working paper series," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2433-2441, September.
    12. Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
    13. Klaus Wohlrabe, 2013. "Einige Anmerkungen zum Handelsblatt-Ranking 2013," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(23), pages 79-83, December.
    14. de Wit, Juliette & Beugelsdijk, Sjoerd, 2024. "Reconciling the individual and societal level in comparative cultural analysis: An archetypal analysis of values and norms across 76 countries," GLO Discussion Paper Series 1483, Global Labor Organization (GLO).
    15. Aleix Alcacer & Irene Epifanio & M Victoria Ibáñez & Amelia Simó & Alfredo Ballester, 2020. "A data-driven classification of 3D foot types by archetypal shapes based on landmarks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    16. Schupp, Claudia & Wache, Benjamin, 2014. "Wie groß ist der Einfluss von deutschen Wirtschaftsforschungsinstituten? Ein Ranking anhand von RePEc-Daten [How large is the influence of German economic research institutes? A ranking analysis us," MPRA Paper 55519, University Library of Munich, Germany.
    17. Vinué, Guillermo, 2017. "Anthropometry: An R Package for Analysis of Anthropometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i06).
    18. Lea A I Vaas & Johannes Sikorski & Victoria Michael & Markus Göker & Hans-Peter Klenk, 2012. "Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-18, April.
    19. Díaz-Faes, Adrián A. & Costas, Rodrigo & Galindo, M. Purificación & Bordons, María, 2015. "Unravelling the performance of individual scholars: Use of Canonical Biplot analysis to explore the performance of scientists by academic rank and scientific field," Journal of Informetrics, Elsevier, vol. 9(4), pages 722-733.
    20. Stefan Weinert, 2012. "Diversity of the DAX30 Executive Board Members: Aspiration and Reality [Diversity der DAX30-Vorstände: Anspruch und Wirklichkeit]," Duesseldorf Working Papers in Applied Management and Economics 20, Duesseldorf University of Applied Sciences.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:87:y:2015:i:c:p:102-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.