Trading Stocks Based on Financial News Using Attention Mechanism
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Huicheng Liu, 2018. "Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network," Papers 1811.06173, arXiv.org.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhishuo Zhang & Manting Luo & Ziyu Luo & Huayong Niu, 2022. "The International City Image of Beijing: A Quantitative Analysis Based on Twitter Texts from 2017–2021," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
- Ali Kabiri & Harold James & John Landon‐Lane & David Tuckett & Rickard Nyman, 2023. "The role of sentiment in the US economy: 1920 to 1934," Economic History Review, Economic History Society, vol. 76(1), pages 3-30, February.
- Young Joon Lee & Soohyon Kim & Ki Young Park, 2019. "Deciphering Monetary Policy Board Minutes with Text Mining: The Case of South Korea," Korean Economic Review, Korean Economic Association, vol. 35, pages 471-511.
- Patrick Houlihan & Germán G. Creamer, 2017. "Can Sentiment Analysis and Options Volume Anticipate Future Returns?," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 669-685, December.
- Ali Kabiri & Harold James & John Landon-Lane & David Tuckett & Rickard Nyman, 2020.
"The Role of Sentiment in the Economy: 1920 to 1934,"
CESifo Working Paper Series
8336, CESifo.
- John Landon-Lane, 2022. "The Role of Sentiment in the U.S. Economy: 1920 to 1934," Departmental Working Papers 202201, Rutgers University, Department of Economics.
- Kabiri, Ali & James, Harold & Landon-Lane, John & Tuckett, David & Nyman, Rickard, 2021. "The role of sentiment in the economy: 1920 to 1934," LSE Research Online Documents on Economics 118889, London School of Economics and Political Science, LSE Library.
- Yanjian Zhu & Zhaoying Wu & Hua Zhang & Jing Yu, 2017. "Media sentiment, institutional investors and probability of stock price crash: evidence from Chinese stock markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1635-1670, December.
- Ken Wong & Max Kwong & Paul Luk & Michael Cheng, 2023. "A robust textual analysis of the dynamics of Hong Kong property market," Pacific Economic Review, Wiley Blackwell, vol. 28(3), pages 314-346, August.
- Leif Anders Thorsrud, 2016.
"Nowcasting using news topics. Big Data versus big bank,"
Working Paper
2016/20, Norges Bank.
- Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
- Patrick Houlihan & Germán G. Creamer, 2021. "Leveraging Social Media to Predict Continuation and Reversal in Asset Prices," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 433-453, February.
- Mikhail Stolbov & Maria Shchepeleva, 2023. "Sentiment-based indicators of real estate market stress and systemic risk: international evidence," Annals of Finance, Springer, vol. 19(3), pages 355-382, September.
- Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
- Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
- Fulop, Andras & Kocsis, Zalan, 2023. "News indices on country fundamentals," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
- Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
- Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021.
"Studying Information Acquisition in the Field: A Practical Guide and Review,"
CEBI working paper series
21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
- Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," ECONtribute Discussion Papers Series 124, University of Bonn and University of Cologne, Germany.
- Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
- David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
- Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
More about this item
Keywords
deep learning; sentiment analysis; word embedding; natural language processing; news summarisation; market-based investor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2001-:d:835568. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.