IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.12825.html
   My bibliography  Save this paper

Trade the Event: Corporate Events Detection for News-Based Event-Driven Trading

Author

Listed:
  • Zhihan Zhou
  • Liqian Ma
  • Han Liu

Abstract

In this paper, we introduce an event-driven trading strategy that predicts stock movements by detecting corporate events from news articles. Unlike existing models that utilize textual features (e.g., bag-of-words) and sentiments to directly make stock predictions, we consider corporate events as the driving force behind stock movements and aim to profit from the temporary stock mispricing that may occur when corporate events take place. The core of the proposed strategy is a bi-level event detection model. The low-level event detector identifies events' existences from each token, while the high-level event detector incorporates the entire article's representation and the low-level detected results to discover events at the article-level. We also develop an elaborately-annotated dataset EDT for corporate event detection and news-based stock prediction benchmark. EDT includes 9721 news articles with token-level event labels as well as 303893 news articles with minute-level timestamps and comprehensive stock price labels. Experiments on EDT indicate that the proposed strategy outperforms all the baselines in winning rate, excess returns over the market, and the average return on each transaction.

Suggested Citation

  • Zhihan Zhou & Liqian Ma & Han Liu, 2021. "Trade the Event: Corporate Events Detection for News-Based Event-Driven Trading," Papers 2105.12825, arXiv.org, revised May 2021.
  • Handle: RePEc:arx:papers:2105.12825
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.12825
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    2. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    3. Huicheng Liu, 2018. "Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network," Papers 1811.06173, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Rong & Hou, Wenxuan & Liu, Yue (Lucy) & Zhang, John Ziyang, 2018. "Media censorship and stock price: Evidence from the foreign share discount in China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 112-133.
    2. John Garcia, 2021. "Analyst herding and firm-level investor sentiment," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 461-494, December.
    3. Tirunillai, S. & Tellis, G.J., 2011. "Does Online Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," ERIM Report Series Research in Management 25817, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Roberto Casarin & Flaminio Squazzoni, 2012. "Financial press and stock markets in times of crisis," Working Papers 2012_04, Department of Economics, University of Venice "Ca' Foscari".
    5. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    6. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    7. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    8. Farag, Hisham, 2013. "Price limit bands, asymmetric volatility and stock market anomalies: Evidence from emerging markets," Global Finance Journal, Elsevier, vol. 24(1), pages 85-97.
    9. Liu, Wenwen & Zhang, Chang & Qiao, Gaoxiu & Xu, Lei, 2022. "Impact of network investor sentiment and news arrival on jumps," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    10. Deeney, Peter & Cummins, Mark & Dowling, Michael & Smeaton, Alan F., 2016. "Influences from the European Parliament on EU emissions prices," Energy Policy, Elsevier, vol. 88(C), pages 561-572.
    11. Soumya Mukhopadhyay, 2018. "Opinion mining in management research: the state of the art and the way forward," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 221-250, June.
    12. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    13. Shen, Shulin & Xia, Le & Shuai, Yulin & Gao, Da, 2022. "Measuring news media sentiment using big data for Chinese stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    14. Roberto Casarin & Flaminio Squazzoni, 2013. "Being on the Field When the Game Is Still Under Way. The Financial Press and Stock Markets in Times of Crisis," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-14, July.
    15. Yiqi Deng & Siu Ming Yiu, 2022. "Deep Multiple Instance Learning For Forecasting Stock Trends Using Financial News," Papers 2206.14452, arXiv.org.
    16. Gu, Chen & Kurov, Alexander, 2020. "Informational role of social media: Evidence from Twitter sentiment," Journal of Banking & Finance, Elsevier, vol. 121(C).
    17. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    18. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    19. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    20. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.12825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.