IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v122y2020i3d10.1007_s11192-020-03361-4.html
   My bibliography  Save this article

Exploring linguistic characteristics of highly browsed and downloaded academic articles

Author

Listed:
  • Bikun Chen

    (Nanjing University of Science and Technology)

  • Dannan Deng

    (Nanjing University of Science and Technology)

  • Zhouyan Zhong

    (Nanjing University of Science and Technology)

  • Chengzhi Zhang

    (Nanjing University of Science and Technology)

Abstract

Views and downloads of academic articles have become important supplementary indicators of scholarly impact. It is assumed that linguistic characteristics have an influence on article views and downloads to some extent. To understand the relationship between linguistic characteristics and article views and downloads, this study selected 63,002 full-text articles published from 2014 to 2015 in the PLoS (Public Library of Science) journals (PLoS Biology, PLoS Computational Biology, PLoS Genetics, PLoS Medicine, PLoS Neglected Tropical Diseases, PLoS One and PLoS Pathogens), and introduced seven indicators (title length, abstract length, full text length, sentence length, lexical diversity, lexical density and lexical sophistication) to measure linguistic characteristics of articles, grouped into Top 20% viewed and downloaded (proxy of highly browsed and downloaded articles), total and Bottom 20% viewed and downloaded categories. The results suggested that most linguistic characteristics played little role in article views and downloads in our data sets in general, but some linguistic characteristics (e.g. title length and average sentence length) in specific PLoS journal and platform (PLoS platform or PubMed Central platform) played certain role in article views and downloads. Also, journal differences and platform differences regarding linguistic characteristics of highly viewed and downloaded articles were existed.

Suggested Citation

  • Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
  • Handle: RePEc:spr:scient:v:122:y:2020:i:3:d:10.1007_s11192-020-03361-4
    DOI: 10.1007/s11192-020-03361-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03361-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03361-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xianwen & Xu, Shenmeng & Peng, Lian & Wang, Zhi & Wang, Chuanli & Zhang, Chunbo & Wang, Xianbing, 2012. "Exploring scientists’ working timetable: Do scientists often work overtime?," Journal of Informetrics, Elsevier, vol. 6(4), pages 655-660.
    2. Pei-Shan Chi & Wolfgang Glänzel, 2018. "Comparison of citation and usage indicators in research assessment in scientific disciplines and journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 537-554, July.
    3. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2019. "How important is software to library and information science research? A content analysis of full-text publications," Journal of Informetrics, Elsevier, vol. 13(1), pages 397-406.
    4. Xianwen Wang & Zhi Wang & Shenmeng Xu, 2013. "Tracing scientist’s research trends realtimely," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 717-729, May.
    5. Shengbo Liu & Chaomei Chen, 2012. "The proximity of co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 495-511, May.
    6. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    7. Terrence A. Brooks, 1986. "Evidence of complex citer motivations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 37(1), pages 34-36, January.
    8. José Osvaldo De Sordi & Marco Antonio Conejero & Manuel Meireles, 2016. "Bibliometric indicators in the context of regional repositories: proposing the D-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 235-258, April.
    9. Philip M. Davis & Leah R. Solla, 2003. "An IP‐level analysis of usage statistics for electronic journals in chemistry: Making inferences about user behavior," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(11), pages 1062-1068, September.
    10. Jin-kun Wan & Ping-huan Hua & Ronald Rousseau & Xiu-kun Sun, 2010. "The journal download immediacy index (DII): experiences using a Chinese full-text database," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 555-566, March.
    11. Hamid R. Jamali & Mahsa Nikzad, 2011. "Article title type and its relation with the number of downloads and citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 653-661, August.
    12. Bikun Chen, 2018. "Usage pattern comparison of the same scholarly articles between Web of Science (WoS) and Springer," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 519-537, April.
    13. Pei-Shan Chi & Wolfgang Glänzel, 2017. "An empirical investigation of the associations among usage, scientific collaboration and citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 403-412, July.
    14. Donald O. Case & Georgeann M. Higgins, 2000. "How can we investigate citation behavior? A study of reasons for citing literature in communication," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(7), pages 635-645.
    15. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    16. Star X. Zhao & Wen Lou & Alice M. Tan & Shuang Yu, 2018. "Do funded papers attract more usage?," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 153-168, April.
    17. Muhammad Salman Khan & Muhammad Younas, 2017. "Analyzing readers behavior in downloading articles from IEEE digital library: a study of two selected journals in the field of education," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1523-1537, March.
    18. Henry Small, 2011. "Interpreting maps of science using citation context sentiments: a preliminary investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 373-388, May.
    19. Henk F. Moed, 2005. "Statistical relationships between downloads and citations at the level of individual documents within a single journal," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(10), pages 1088-1097, August.
    20. Shengbo Liu & Chaomei Chen, 2013. "The differences between latent topics in abstracts and citation contexts of citing papers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(3), pages 627-639, March.
    21. Ying Ding & Guo Zhang & Tamy Chambers & Min Song & Xiaolong Wang & Chengxiang Zhai, 2014. "Content-based citation analysis: The next generation of citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1820-1833, September.
    22. Christian Schlögl & Juan Gorraiz & Christian Gumpenberger & Kris Jack & Peter Kraker, 2014. "Comparison of downloads, citations and readership data for two information systems journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1113-1128, November.
    23. Lu, Chao & Bu, Yi & Dong, Xianlei & Wang, Jie & Ding, Ying & Larivière, Vincent & Sugimoto, Cassidy R. & Paul, Logan & Zhang, Chengzhi, 2019. "Analyzing linguistic complexity and scientific impact," Journal of Informetrics, Elsevier, vol. 13(3), pages 817-829.
    24. Kathy McKeown & Hal Daume III & Snigdha Chaturvedi & John Paparrizos & Kapil Thadani & Pablo Barrio & Or Biran & Suvarna Bothe & Michael Collins & Kenneth R. Fleischmann & Luis Gravano & Rahul Jha & B, 2016. "Predicting the impact of scientific concepts using full-text features," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2684-2696, November.
    25. V. Cano, 1989. "Citation behavior: Classification, utility, and location," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 40(4), pages 284-290, July.
    26. Wang, Xianwen & Peng, Lian & Zhang, Chunbo & Xu, Shenmeng & Wang, Zhi & Wang, Chuanli & Wang, Xianbing, 2013. "Exploring scientists’ working timetable: A global survey," Journal of Informetrics, Elsevier, vol. 7(3), pages 665-675.
    27. Philip M. Davis & Jason S. Price, 2006. "eJournal interface can influence usage statistics: Implications for libraries, publishers, and Project COUNTER," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(9), pages 1243-1248, July.
    28. Xuelian Pan & Erjia Yan & Weina Hua, 2016. "Disciplinary differences of software use and impact in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1593-1610, December.
    29. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co-citation clustering using full text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    30. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    31. Shengbo Liu & Chaomei Chen, 2013. "The differences between latent topics in abstracts and citation contexts of citing papers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 627-639, March.
    32. Chao Lu & Yi Bu & Jie Wang & Ying Ding & Vetle Torvik & Matthew Schnaars & Chengzhi Zhang, 2019. "Examining scientific writing styles from the perspective of linguistic complexity," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(5), pages 462-475, May.
    33. Pan, Xuelian & Yan, Erjia & Wang, Qianqian & Hua, Weina, 2015. "Assessing the impact of software on science: A bootstrapped learning of software entities in full-text papers," Journal of Informetrics, Elsevier, vol. 9(4), pages 860-871.
    34. Yufeng Duan & Zequan Xiong, 2017. "Download patterns of journal papers and their influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1761-1775, September.
    35. Henk F. Moed & Gali Halevi, 2016. "On full text download and citation distributions in scientific-scholarly journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(2), pages 412-431, February.
    36. Boyack, Kevin W. & van Eck, Nees Jan & Colavizza, Giovanni & Waltman, Ludo, 2018. "Characterizing in-text citations in scientific articles: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 59-73.
    37. Juan Gorraiz & Christian Gumpenberger & Christian Schlögl, 2014. "Usage versus citation behaviours in four subject areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1077-1095, November.
    38. Hu, Zhigang & Chen, Chaomei & Liu, Zeyuan, 2013. "Where are citations located in the body of scientific articles? A study of the distributions of citation locations," Journal of Informetrics, Elsevier, vol. 7(4), pages 887-896.
    39. Xianwen Wang & Zhichao Fang & Xiaoling Sun, 2016. "Usage patterns of scholarly articles on Web of Science: a study on Web of Science usage count," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 917-926, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    2. Song, Ningyuan & Chen, Kejun & Zhao, Yuehua, 2023. "Understanding writing styles of scientific papers in the IS-LS domain: Evidence from abstracts over the past three decades," Journal of Informetrics, Elsevier, vol. 17(1).
    3. Dengsheng Wu & Huidong Wu & Jianping Li, 2024. "Citation advantage of positive words: predictability, temporal evolution, and universality in varied quality journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4275-4293, July.
    4. Gui Wang & Hui Wang & Xinyi Sun & Nan Wang & Li Wang, 2023. "Linguistic complexity in scientific writing: A large-scale diachronic study from 1821 to 1920," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 441-460, January.
    5. Don Watson & Manfred Krug & Claus-Christian Carbon, 2022. "The relationship between citations and the linguistic traits of specific academic discourse communities identified by using social network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1755-1781, April.
    6. Jiawei Wang, 2024. "Quantifying cohesion in high citation research article titles: a cross-disciplinary and diachronic investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5075-5102, September.
    7. Tan Jin & Huiqiong Duan & Xiaofei Lu & Jing Ni & Kai Guo, 2021. "Do research articles with more readable abstracts receive higher online attention? Evidence from Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8471-8490, October.
    8. ↓Xia Peng & Zequan Xiong & Li Yang, 2024. "Can document characteristics affect motivations for literature usage?," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3543-3563, June.
    9. Xueying Liu & Haoran Zhu, 2023. "Linguistic positivity in soft and hard disciplines: temporal dynamics, disciplinary variation, and the relationship with research impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3107-3127, May.
    10. Brito, Ana C.M. & Silva, Filipi N. & de Arruda, Henrique F. & Comin, Cesar H. & Amancio, Diego R. & Costa, Luciano da F., 2021. "Classification of abrupt changes along viewing profiles of scientific articles," Journal of Informetrics, Elsevier, vol. 15(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bikun Chen, 2018. "Usage pattern comparison of the same scholarly articles between Web of Science (WoS) and Springer," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 519-537, April.
    2. Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
    3. Yufeng Duan & Zequan Xiong, 2017. "Download patterns of journal papers and their influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1761-1775, September.
    4. Xianwen Wang & Zhichao Fang & Xiaoling Sun, 2016. "Usage patterns of scholarly articles on Web of Science: a study on Web of Science usage count," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 917-926, November.
    5. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    6. Muhammad Salman Khan & Muhammad Younas, 2017. "Analyzing readers behavior in downloading articles from IEEE digital library: a study of two selected journals in the field of education," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1523-1537, March.
    7. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    8. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    9. Wencan Tian & Yongzhen Wang & Zhigang Hu & Ruonan Cai & Guangyao Zhang & Xianwen Wang, 2024. "Does Granger causality exist between article usage and publication counts? A topic-level time-series evidence from IEEE Xplore," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3285-3302, June.
    10. ↓Xia Peng & Zequan Xiong & Li Yang, 2024. "Can document characteristics affect motivations for literature usage?," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3543-3563, June.
    11. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    12. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    13. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    14. Yezhu Wang & Yundong Xie & Dong Wang & Lu Guo & Rongting Zhou, 2022. "Do cover papers get better citations and usage counts? An analysis of 42 journals in cell biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3793-3813, July.
    15. Luis Javier Cabeza Ramírez & Sandra M. Sánchez-Cañizares & Fernando J. Fuentes-García, 2019. "Past Themes and Tracking Research Trends in Entrepreneurship: A Co-Word, Cites and Usage Count Analysis," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    16. Raja Habib & Muhammad Tanvir Afzal, 2019. "Sections-based bibliographic coupling for research paper recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 643-656, May.
    17. Dongqing Lyu & Xuanmin Ruan & Juan Xie & Ying Cheng, 2021. "The classification of citing motivations: a meta-synthesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3243-3264, April.
    18. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    19. Brito, Ana C.M. & Silva, Filipi N. & de Arruda, Henrique F. & Comin, Cesar H. & Amancio, Diego R. & Costa, Luciano da F., 2021. "Classification of abrupt changes along viewing profiles of scientific articles," Journal of Informetrics, Elsevier, vol. 15(2).
    20. Guangyao Zhang & Yuqi Wang & Weixi Xie & Han Du & Chunlin Jiang & Xianwen Wang, 2021. "The open access usage advantage: a temporal and spatial analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6187-6199, July.

    More about this item

    Keywords

    Linguistic characteristics; Linguistic complexity; Usage metrics; PLoS; PubMed Central;
    All these keywords.

    JEL classification:

    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:122:y:2020:i:3:d:10.1007_s11192-020-03361-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.