IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i1d10.1007_s11192-018-2747-1.html
   My bibliography  Save this article

The role of baseline granularity for benchmarking citation impact. The case of CSS profiles

Author

Listed:
  • Wolfgang Glänzel

    (KU Leuven
    Library of the Hungarian Academy of Sciences)

  • Bart Thijs

    (KU Leuven)

Abstract

In this paper we study the effect of granularity on Characteristic Scores and Scales (CSS). Unlike the traditional indicators that are mostly based on means and quantiles, CSS require the reduction of the citation distributions collaboration of the underlying reference population to four states (classes) and thus higher a different level of granularity. While the question of the choice of granularity is at higher levels of aggregation usually not critical since countries and university have rather multidisciplinary profiles, at lower aggregation levels specialisation becomes more typical. Inappropriate granularity might not warrant the depiction of the publication profiles at these levels in a correct and adequate manner and thus not add accurate citation profiles either. In order to be able to process one complete annual volume of the Web of Science, we decided to calculate CSS thresholds and classes for two levels of granularity, namely sub-fields and WoS Subject Categories. With about 5% deviation, we did not find a real significance. However, we identified journals with similar impact measures but different citation profiles, independently of the granularity. Finally, we have pointed to the limitations in the choice of granularity—in terms of both too broad and too narrow subjects.

Suggested Citation

  • Wolfgang Glänzel & Bart Thijs, 2018. "The role of baseline granularity for benchmarking citation impact. The case of CSS profiles," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 521-536, July.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:1:d:10.1007_s11192-018-2747-1
    DOI: 10.1007/s11192-018-2747-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2747-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2747-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro Albarrán & Javier Ruiz‐Castillo, 2011. "References made and citations received by scientific articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 40-49, January.
    2. Wolfgang Glänzel & Henk F. Moed, 2002. "Journal impact measures in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(2), pages 171-193, February.
    3. Jonathan Adams & Karen Gurney & Louise Jackson, 2008. "Calibrating the zoom — a test of Zitt’s hypothesis," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(1), pages 81-95, April.
    4. Wolfgang Glänzel & Bart Thijs & András Schubert & Koenraad Debackere, 2009. "Subfield-specific normalized relative indicators and a new generation of relational charts: Methodological foundations illustrated on the assessment of institutional research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 165-188, January.
    5. Bart Thijs & Koenraad Debackere & Wolfgang Glänzel, 2017. "Improved author profiling through the use of citation classes," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 829-839, May.
    6. Michel Zitt & Suzy Ramanana-Rahary & Elise Bassecoulard, 2005. "Relativity of citation performance and excellence measures: From cross-field to cross-scale effects of field-normalisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 63(2), pages 373-401, April.
    7. Wolfgang Glänzel & Bart Thijs & Koenraad Debackere, 2014. "The application of citation-based performance classes to the disciplinary and multidisciplinary assessment in national comparison and institutional research assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 939-952, November.
    8. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    9. Wolfgang Glänzel & Ping Zhou, 2011. "Publication activity, citation impact and bi-directional links between publications and patents in biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 505-525, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    2. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Tianyu Zhang, 2019. "Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    3. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    4. Mingyang Wang & Shijia Jiao & Kah-Hin Chai & Guangsheng Chen, 2019. "Building journal’s long-term impact: using indicators detected from the sustained active articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 261-283, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    2. Bart Thijs & Koenraad Debackere & Wolfgang Glänzel, 2017. "Improved author profiling through the use of citation classes," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 829-839, May.
    3. Ruiz-Castillo, Javier & Costas, Rodrigo, 2018. "Individual and field citation distributions in 29 broad scientific fields," Journal of Informetrics, Elsevier, vol. 12(3), pages 868-892.
    4. Wolfgang Glänzel & Lin Zhang, 2018. "Scientometric research assessment in the developing world: A tribute to Michael J. Moravcsik from the perspective of the twenty-first century," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(3), pages 1517-1532, June.
    5. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    6. Pei-Shan Chi & Wolfgang Glänzel, 2018. "Comparison of citation and usage indicators in research assessment in scientific disciplines and journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 537-554, July.
    7. Wolfgang Glänzel & Bart Thijs & András Schubert & Koenraad Debackere, 2009. "Subfield-specific normalized relative indicators and a new generation of relational charts: Methodological foundations illustrated on the assessment of institutional research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 165-188, January.
    8. Zhou, Ping & Leydesdorff, Loet, 2011. "Fractional counting of citations in research evaluation: A cross- and interdisciplinary assessment of the Tsinghua University in Beijing," Journal of Informetrics, Elsevier, vol. 5(3), pages 360-368.
    9. Ludo Waltman & Nees Jan Eck, 2013. "Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 699-716, September.
    10. Franceschini, Fiorenzo & Maisano, Domenico, 2014. "Sub-field normalization of the IEEE scientific journals based on their connection with Technical Societies," Journal of Informetrics, Elsevier, vol. 8(3), pages 508-533.
    11. Wolfgang Glänzel & Sarah Heeffer & Bart Thijs, 2016. "A triangular model for publication and citation statistics of individual authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 857-872, May.
    12. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "On the interplay between normalisation, bias, and performance of paper impact metrics," Journal of Informetrics, Elsevier, vol. 13(1), pages 270-290.
    13. Juan Miguel Campanario, 2018. "Are leaders really leading? Journals that are first in Web of Science subject categories in the context of their groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 111-130, April.
    14. Bárbara S. Lancho-Barrantes & Vicente P. Guerrero-Bote & Félix Moya-Anegón, 2010. "The iceberg hypothesis revisited," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 443-461, November.
    15. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    16. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    17. Wolfgang Glänzel & András Schubert & Bart Thijs & Koenraad Debackere, 2011. "A priori vs. a posteriori normalisation of citation indicators. The case of journal ranking," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 415-424, May.
    18. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    19. Glänzel, Wolfgang, 2007. "Characteristic scores and scales," Journal of Informetrics, Elsevier, vol. 1(1), pages 92-102.
    20. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:1:d:10.1007_s11192-018-2747-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.