IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0222900.html
   My bibliography  Save this article

Modeling Chikungunya control strategies and Mayaro potential outbreak in the city of Rio de Janeiro

Author

Listed:
  • Esteban Dodero-Rojas
  • Luiza G Ferreira
  • Vitor B P Leite
  • José N Onuchic
  • Vinícius G Contessoto

Abstract

Mosquito-borne diseases have become a significant health issue in many regions around the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya, became epidemic in the last decades. Health surveillance reports during this period were crucial in providing scientific-based information to guide decision making and resources allocation to control outbreaks. In this work, we perform data analysis of the last Chikungunya epidemics in the city of Rio de Janeiro by applying a compartmental mathematical model. Sensitivity analyses were performed in order to describe the contribution of each parameter to the outbreak incidence. We estimate the “basic reproduction number” for those outbreaks and predict the potential epidemic outbreak of the Mayaro virus. We also simulated several scenarios with different public interventions to decrease the number of infected people. Such scenarios should provide insights about possible strategies to control future outbreaks.

Suggested Citation

  • Esteban Dodero-Rojas & Luiza G Ferreira & Vitor B P Leite & José N Onuchic & Vinícius G Contessoto, 2020. "Modeling Chikungunya control strategies and Mayaro potential outbreak in the city of Rio de Janeiro," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0222900
    DOI: 10.1371/journal.pone.0222900
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222900
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0222900&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0222900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laith Yakob & Archie C A Clements, 2013. "A Mathematical Model of Chikungunya Dynamics and Control: The Major Epidemic on Réunion Island," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-6, March.
    2. Ebenezer Bonyah & Muhammad Altaf Khan & K O Okosun & Saeed Islam, 2017. "A theoretical model for Zika virus transmission," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Walker, Melody & Robert, Michael A. & Childs, Lauren M., 2021. "The importance of density dependence in juvenile mosquito development and survival: A model-based investigation," Ecological Modelling, Elsevier, vol. 440(C).
    3. Luba Pascoe & Thomas Clemen & Karen Bradshaw & Devotha Nyambo, 2022. "Review of Importance of Weather and Environmental Variables in Agent-Based Arbovirus Models," IJERPH, MDPI, vol. 19(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L., Diego F. Aranda & González-Parra, Gilberto & Benincasa, Tommaso, 2019. "Mathematical modeling and numerical simulations of Zika in Colombia considering mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 1-18.
    2. Shah Hussain & Elissa Nadia Madi & Naveed Iqbal & Thongchai Botmart & Yeliz Karaca & Wael W. Mohammed, 2021. "Fractional Dynamics of Vector-Borne Infection with Sexual Transmission Rate and Vaccination," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    3. Ghosh, M. & Olaniyi, S. & Obabiyi, O.S., 2020. "Mathematical analysis of reinfection and relapse in malaria dynamics," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    4. Sharma, Naveen & Singh, Ram & Singh, Jagdev & Castillo, Oscar, 2021. "Modeling assumptions, optimal control strategies and mitigation through vaccination to Zika virus," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Wang, Yan & Liu, Xianning, 2017. "Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 138(C), pages 31-48.
    7. Khan, Muhammad Altaf & Islam, Saeed & Zaman, Gul, 2018. "Media coverage campaign in Hepatitis B transmission model," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 378-393.
    8. Wang, Yan & Li, Yazhi & Liu, Lili & Liu, Xianning, 2022. "A periodic Chikungunya model with virus mutation and transovarial transmission," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Woldegerima, Woldegebriel Assefa & Ouifki, Rachid & Banasiak, Jacek, 2021. "Mathematical analysis of the impact of transmission-blocking drugs on the population dynamics of malaria," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    10. Hasan, Bushra & Singh, Manmohan & Richards, David & Blicblau, Aaron, 2019. "Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 56-75.
    11. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    12. Meskaf, Adil & Khyar, Omar & Danane, Jaouad & Allali, Karam, 2020. "Global stability analysis of a two-strain epidemic model with non-monotone incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    13. Soukhovolsky, Vladislav & Kovalev, Anton & Pitt, Anne & Kessel, Boris, 2020. "A new modelling of the COVID 19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Tara Sadeghieh & Lisa A Waddell & Victoria Ng & Alexandra Hall & Jan Sargeant, 2020. "A scoping review of importation and predictive models related to vector-borne diseases, pathogens, reservoirs, or vectors (1999–2016)," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.