IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v133y2020ics0960077920300461.html
   My bibliography  Save this article

Global stability analysis of a two-strain epidemic model with non-monotone incidence rates

Author

Listed:
  • Meskaf, Adil
  • Khyar, Omar
  • Danane, Jaouad
  • Allali, Karam

Abstract

In this paper, we study an epidemic model describing two strains with non-monotone incidence rates. The model consists of six ordinary differential equations illustrating the interaction between the susceptible, the exposed, the infected and the removed individuals. The system of equations has four equilibrium points, disease-free equilibrium, endemic equilibrium with respect to strain 1, endemic equilibrium with respect to strain 2, and the last endemic equilibrium with respect to both strains. The global stability analysis of the equilibrium points was carried out through the use of suitable Lyapunov functions. Two basic reproduction numbers R01 and R02 are found; we have shown that if both are less than one, the disease dies out. It was established that the global stability of each endemic equilibrium depends on both basic reproduction numbers and also on the strain inhibitory effect reproduction number(s) Rm and/or Rk. It was also shown that any strain with highest basic reproduction number will automatically dominate the other strain. Numerical simulations were carried out to support the analytic results and to show the effect of different problem parameters on the infection spread.

Suggested Citation

  • Meskaf, Adil & Khyar, Omar & Danane, Jaouad & Allali, Karam, 2020. "Global stability analysis of a two-strain epidemic model with non-monotone incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300461
    DOI: 10.1016/j.chaos.2020.109647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920300461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebenezer Bonyah & Muhammad Altaf Khan & K O Okosun & Saeed Islam, 2017. "A theoretical model for Zika virus transmission," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farah, El Mehdi & Amine, Saida & Allali, Karam, 2021. "Dynamics of a time-delayed two-strain epidemic model with general incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Gilberto Gonzalez-Parra & Abraham J. Arenas, 2021. "Nonlinear Dynamics of the Introduction of a New SARS-CoV-2 Variant with Different Infectiousness," Mathematics, MDPI, vol. 9(13), pages 1-22, July.
    3. Wang, Chaoqian, 2020. "Dynamics of conflicting opinions considering rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Han, Dun & Wang, Xiao, 2023. "Vaccination strategies and virulent mutation spread: A game theory study," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, M. & Olaniyi, S. & Obabiyi, O.S., 2020. "Mathematical analysis of reinfection and relapse in malaria dynamics," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    2. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Khan, Muhammad Altaf & Islam, Saeed & Zaman, Gul, 2018. "Media coverage campaign in Hepatitis B transmission model," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 378-393.
    4. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    5. L., Diego F. Aranda & González-Parra, Gilberto & Benincasa, Tommaso, 2019. "Mathematical modeling and numerical simulations of Zika in Colombia considering mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 1-18.
    6. Shah Hussain & Elissa Nadia Madi & Naveed Iqbal & Thongchai Botmart & Yeliz Karaca & Wael W. Mohammed, 2021. "Fractional Dynamics of Vector-Borne Infection with Sexual Transmission Rate and Vaccination," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    7. Woldegerima, Woldegebriel Assefa & Ouifki, Rachid & Banasiak, Jacek, 2021. "Mathematical analysis of the impact of transmission-blocking drugs on the population dynamics of malaria," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    8. Hasan, Bushra & Singh, Manmohan & Richards, David & Blicblau, Aaron, 2019. "Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 56-75.
    9. Soukhovolsky, Vladislav & Kovalev, Anton & Pitt, Anne & Kessel, Boris, 2020. "A new modelling of the COVID 19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Esteban Dodero-Rojas & Luiza G Ferreira & Vitor B P Leite & José N Onuchic & Vinícius G Contessoto, 2020. "Modeling Chikungunya control strategies and Mayaro potential outbreak in the city of Rio de Janeiro," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.