IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208927.html
   My bibliography  Save this article

Bayesian change-point modeling with segmented ARMA model

Author

Listed:
  • Farhana Sadia
  • Sarah Boyd
  • Jonathan M Keith

Abstract

Time series segmentation aims to identify segment boundary points in a time series, and to determine the dynamical properties corresponding to each segment. To segment time series data, this article presents a Bayesian change-point model in which the data within segments follows an autoregressive moving average (ARMA) model. A prior distribution is defined for the number of change-points, their positions, segment means and error terms. To quantify uncertainty about the location of change-points, the resulting posterior probability distributions are sampled using the Generalized Gibbs sampler Markov chain Monte Carlo technique. This methodology is illustrated by applying it to simulated data and to real data known as the well-log time series data. This well-log data records the measurements of nuclear magnetic response of underground rocks during the drilling of a well. Our approach has high sensitivity, and detects a larger number of change-points than have been identified by comparable methods in the existing literature.

Suggested Citation

  • Farhana Sadia & Sarah Boyd & Jonathan M Keith, 2018. "Bayesian change-point modeling with segmented ARMA model," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0208927
    DOI: 10.1371/journal.pone.0208927
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208927
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208927&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    2. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    3. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    4. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    5. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    6. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    7. Cathy W. S. Chen & Mike K. P. So, 2003. "Subset threshold autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 49-66.
    8. Fernando Ferraz do Nascimento & Wyara Vanesa Moura e Silva, 2017. "A Bayesian model for multiple change point to extremes, with application to environmental and financial data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2410-2426, October.
    9. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    10. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    11. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    12. Rotondi, R., 2002. "On the influence of the proposal distributions on a reversible jump MCMC algorithm applied to the detection of multiple change-points," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 633-653, September.
    13. Ardia, David & Dufays, Arnaud & Ordás Criado, Carlos, 2023. "Linking Frequentist and Bayesian Change-Point Methods," MPRA Paper 119486, University Library of Munich, Germany.
    14. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    15. Li Zhaoyuan & Tian Maozai, 2017. "Detecting Change-Point via Saddlepoint Approximations," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 48-73, February.
    16. Rosalia Condorelli, 2013. "A Bayesian analysis of suicide data," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 1143-1161, February.
    17. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
    18. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    19. Tian, Guo-Liang & Ng, Kai Wang & Li, Kai-Can & Tan, Ming, 2009. "Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3314-3323, July.
    20. R. Rotondi & E. Garavaglia, 2002. "Statistical Analysis of the Completeness of a Seismic Catalogue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(3), pages 245-258, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.