IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i13p2410-2426.html
   My bibliography  Save this article

A Bayesian model for multiple change point to extremes, with application to environmental and financial data

Author

Listed:
  • Fernando Ferraz do Nascimento
  • Wyara Vanesa Moura e Silva

Abstract

Abrupt changes often occur for environmental and financial time series. Most often, these changes are due to human intervention. Change point analysis is a statistical tool used to analyze sudden changes in observations along the time series. In this paper, we propose a Bayesian model for extreme values for environmental and economic datasets that present a typical change point behavior. The model proposed in this paper addresses the situation in which more than one change point can occur in a time series. By analyzing maxima, the distribution of each regime is a generalized extreme value distribution. In this model, the change points are unknown and considered parameters to be estimated. Simulations of extremes with two change points showed that the proposed algorithm can recover the true values of the parameters, in addition to detecting the true change points in different configurations. Also, the number of change points was a problem to be considered, and the Bayesian estimation can correctly identify the correct number of change points for each application. Environmental and financial data were analyzed and results showed the importance of considering the change point in the data and revealed that this change of regime brought about an increase in the return levels, increasing the number of floods in cities around the rivers. Stock market levels showed the necessity of a model with three different regimes.

Suggested Citation

  • Fernando Ferraz do Nascimento & Wyara Vanesa Moura e Silva, 2017. "A Bayesian model for multiple change point to extremes, with application to environmental and financial data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2410-2426, October.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:13:p:2410-2426
    DOI: 10.1080/02664763.2016.1254733
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1254733
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1254733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    2. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    3. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    2. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    3. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    4. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    5. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    6. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
    7. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    8. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    9. Galeano, Pedro, 2007. "The use of cumulative sums for detection of changepoints in the rate parameter of a Poisson Process," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6151-6165, August.
    10. Chiara Lattanzi & Manuele Leonelli, 2019. "A changepoint approach for the identification of financial extreme regimes," Papers 1902.09205, arXiv.org.
    11. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    12. Gianluca Mastrantonio & Giovanna Jona Lasinio & Alessio Pollice & Lorenzo Teodonio & Giulia Capotorti, 2022. "A Dirichlet process model for change‐point detection with multivariate bioclimatic data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    13. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    14. Ardia, David & Dufays, Arnaud & Ordás Criado, Carlos, 2023. "Linking Frequentist and Bayesian Change-Point Methods," MPRA Paper 119486, University Library of Munich, Germany.
    15. Ahelegbey, Daniel Felix & Billio, Monica & Casarin, Roberto, 2024. "Modeling Turning Points in the Global Equity Market," Econometrics and Statistics, Elsevier, vol. 30(C), pages 60-75.
    16. Shimizu, Kenichi, 2023. "Asymptotic properties of Bayesian inference in linear regression with a structural break," Journal of Econometrics, Elsevier, vol. 235(1), pages 202-219.
    17. Tian, Guo-Liang & Ng, Kai Wang & Li, Kai-Can & Tan, Ming, 2009. "Non-iterative sampling-based Bayesian methods for identifying changepoints in the sequence of cases of Haemolytic uraemic syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3314-3323, July.
    18. Smith, Simon C., 2017. "Equity premium estimates from economic fundamentals under structural breaks," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 49-61.
    19. Ko, Stanley I. M. & Chong, Terence T. L. & Ghosh, Pulak, 2014. "Dirichlet Process Hidden Markov Multiple Change-point Model," MPRA Paper 57871, University Library of Munich, Germany.
    20. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:13:p:2410-2426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.