IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v5y2017i1p48-73n4.html
   My bibliography  Save this article

Detecting Change-Point via Saddlepoint Approximations

Author

Listed:
  • Li Zhaoyuan

    (Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing100872China)

  • Tian Maozai

    (Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing100872China)

Abstract

It’s well-known that change-point problem is an important part of model statistical analysis. Most of the existing methods are not robust to criteria of the evaluation of change-point problem. In this article, we consider “mean-shift” problem in change-point studies. A quantile test of single quantile is proposed based on saddlepoint approximation method. In order to utilize the information at different quantile of the sequence, we further construct a “composite quantile test” to calculate the probability of every location of the sequence to be a change-point. The location of change-point can be pinpointed rather than estimated within a interval. The proposed tests make no assumptions about the functional forms of the sequence distribution and work sensitively on both large and small size samples, the case of change-point in the tails, and multiple change-points situation. The good performances of the tests are confirmed by simulations and real data analysis. The saddlepoint approximation based distribution of the test statistic that is developed in the paper is of independent interest and appealing. This finding may be of independent interest to the readers in this research area.

Suggested Citation

  • Li Zhaoyuan & Tian Maozai, 2017. "Detecting Change-Point via Saddlepoint Approximations," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 48-73, February.
  • Handle: RePEc:bpj:jossai:v:5:y:2017:i:1:p:48-73:n:4
    DOI: 10.21078/JSSI-2017-048-26
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2017-048-26
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2017-048-26?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    2. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "A note on the convergence rate of the kernel density estimator of the mode," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1866-1871, September.
    3. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    4. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    5. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    6. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "Strong convergence rate of estimators of change point and its application," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 990-998, February.
    7. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    8. Gombay, Edit & Serban, Daniel, 2009. "Monitoring parameter change in time series models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 715-725, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    2. Andrew T. Levin & Jeremy M. Piger, 2003. "Is inflation persistence intrinsic in industrial economies?," Working Papers 2002-023, Federal Reserve Bank of St. Louis.
    3. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    4. Benati, Luca, 2007. "Drift and breaks in labor productivity," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2847-2877, August.
    5. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    6. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    7. Kirch Claudia, 2007. "Resampling in the frequency domain of time series to determine critical values for change-point tests," Statistics & Risk Modeling, De Gruyter, vol. 25(3), pages 237-261, July.
    8. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    9. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    10. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2012. "Inference regarding multiple structural changes in linear models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 281-302.
    11. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    12. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    13. Vogelsang, Timothy J., 1998. "Sources of nonmonotonic power when testing for a shift in mean of a dynamic time series," Journal of Econometrics, Elsevier, vol. 88(2), pages 283-299, November.
    14. van Dijk, D.J.C. & Osborn, D.R. & Sensier, M., 2002. "Changes in variability of the business cycle in the G7 countries," Econometric Institute Research Papers EI 2002-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    16. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    17. Cathy S. Goldberg & Francisco A. Delgado, 2001. "Financial Integration of Emerging Markets: An Analysis of Latin America Versus South Asia Using Individual Stocks," Multinational Finance Journal, Multinational Finance Journal, vol. 5(4), pages 259-301, December.
    18. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    19. Kaivan Munshi & Mark Rosenzweig, 2013. "Networks, Commitment, and Competence: Caste in Indian Local Politics," NBER Working Papers 19197, National Bureau of Economic Research, Inc.
    20. Sensier, M. & van Dijk, D.J.C., 2001. "Short-term volatility versus long-term growth: evidence in US macroeconomic time series," Econometric Institute Research Papers EI 2001-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:5:y:2017:i:1:p:48-73:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.