IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v22y2003i1p49-66.html
   My bibliography  Save this article

Subset threshold autoregression

Author

Listed:
  • Cathy W. S. Chen

    (Feng-Chia University, Taiwan)

  • Mike K. P. So

    (Hong Kong University of Science and Technology)

Abstract

We develop in this paper an efficient way to select the best subset threshold autoregressive model. The proposed method uses a stochastic search idea. Differing from most conventional approaches, our method does not require us to fix the delay or the threshold parameters in advance. By adopting the Markov chain Monte Carlo techniques, we can identify the best subset model from a very large of number of possible models, and at the same time estimate the unknown parameters. A simulation experiment shows that the method is very effective. In its application to the US unemployment rate, the stochastic search method successfully selects lag one as the time delay and five best models from more than 4000 choices. Copyright © 2003 John Wiley & Sons, Ltd.

Suggested Citation

  • Cathy W. S. Chen & Mike K. P. So, 2003. "Subset threshold autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 49-66.
  • Handle: RePEc:jof:jforec:v:22:y:2003:i:1:p:49-66
    DOI: 10.1002/for.859
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.859
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Geweke & Nobuhiko Terui, 1993. "Bayesian Threshold Autoregressive Models For Nonlinear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 441-454, September.
    2. B. Y. Thanoon, 1990. "Subset Threshold Autoregression With Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(1), pages 75-87, January.
    3. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    4. Cathy W. S. Chen & Jack C. Lee, 1995. "Bayesian Inference Of Threshold Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 483-492, September.
    5. Nicholas G. Polson & George C. Tiao (ed.), 1995. "Bayesian Inference," Books, Edward Elgar Publishing, volume 0, number 602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Ferrara & Dominique Guégan, 2006. "Detection of the Industrial Business Cycle using SETAR Models," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 353-371.
    2. Anne Peguin-Feissolle & Gilles Dufrénot & Dominique Guegan, 2006. "Changing-regime volatility : A fractionally integrated SETAR model," Working Papers halshs-00410540, HAL.
    3. Florian Huber, 2014. "Forecasting Exchange Rates using Bayesian Threshold Vector Autoregressions," Economics Bulletin, AccessEcon, vol. 34(3), pages 1687-1695.
    4. Xiaobing Zheng & Kun Liang & Qiang Xia & Dabin Zhang, 2022. "Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1175-1201, March.
    5. Philipp Piribauer, 2016. "Heterogeneity in spatial growth clusters," Empirical Economics, Springer, vol. 51(2), pages 659-680, September.
    6. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2004. "Estimating threshold subset autoregressive moving-average models by genetic algorithms," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 39-61.
    7. Liu, Hsiang-Hsi & Chuang, Wen-I & Huang, Jih-Jeng & Chen, Yu-Hao, 2016. "The overconfident trading behavior of individual versus institutional investors," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 518-539.
    8. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Long-memory dynamics in a SETAR model - applications to stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 391-406, December.
    9. Cathy Chen & Feng Liu & Richard Gerlach, 2011. "Bayesian subset selection for threshold autoregressive moving-average models," Computational Statistics, Springer, vol. 26(1), pages 1-30, March.
    10. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
    2. Chen, Cathy W. S., 1998. "A Bayesian analysis of generalized threshold autoregressive models," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 15-22, September.
    3. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    4. Florian Huber, 2014. "Forecasting Exchange Rates using Bayesian Threshold Vector Autoregressions," Economics Bulletin, AccessEcon, vol. 34(3), pages 1687-1695.
    5. Valeriu Nalban, 2016. "Sentiment-Driven Asymmetries in Romanian Monetary Policy Transmission," Eastern European Economics, Taylor & Francis Journals, vol. 54(3), pages 251-270, May.
    6. Abidoye, Babatunde O & Mabaya, Edward, 2014. "Adoption of genetically modified crops in South Africa: Effects on wholesale maize prices," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 53(1), February.
    7. Terence D.Agbeyegbe & Elena Goldman, 2005. "Estimation of threshold time series models using efficient jump MCMC," Economics Working Paper Archive at Hunter College 406, Hunter College Department of Economics, revised 2005.
    8. Cathy W. S. Chen & Mike K. P. So & Ming-Tien Chen, 2005. "A Bayesian threshold nonlinearity test for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 61-75.
    9. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    10. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    11. Ip, Wai-Cheung & Wong, Heung & Li, Yuan & Xie, Zhongjie, 1999. "Threshold variable selection by wavelets in open-loop threshold autoregressive models," Statistics & Probability Letters, Elsevier, vol. 42(4), pages 375-392, May.
    12. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    13. Ólan T. Henry & Peter M. Summers, 2000. "Australian Economic Growth: Nonlinearities and International Influences," The Economic Record, The Economic Society of Australia, vol. 76(235), pages 365-373, December.
    14. Mohamed A. Ismail & Husni A. Charif, 2003. "Bayesian inference for threshold moving average models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 119-132.
    15. Nobuhiko Terui & Wirawan Dony Dahana, 2006. "Research Note—Estimating Heterogeneous Price Thresholds," Marketing Science, INFORMS, vol. 25(4), pages 384-391, 07-08.
    16. Abidoye, Babatunde O. & Mabaya, Edward, 2013. "Adoption of Genetically Modified Crops in South Africa: Effects on wholesale maize prices," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 160579, African Association of Agricultural Economists (AAAE).
    17. Chen, Cathy W.S. & So, Mike K.P., 2006. "On a threshold heteroscedastic model," International Journal of Forecasting, Elsevier, vol. 22(1), pages 73-89.
    18. De Luigi, Clara & Huber, Florian, 2018. "Debt regimes and the effectiveness of monetary policy," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 218-238.
    19. repec:ags:ijag24:345272 is not listed on IDEAS
    20. Cathy W. S. Chen & Jack C. Lee, 1995. "Bayesian Inference Of Threshold Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(5), pages 483-492, September.
    21. Varun Agiwal & Jitendra Kumar, 2020. "Bayesian estimation for threshold autoregressive model with multiple structural breaks," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 361-382, December.
    22. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
    23. Jiazhu Pan & Qiang Xia & Jinshan Liu, 2017. "Bayesian analysis of multiple thresholds autoregressive model," Computational Statistics, Springer, vol. 32(1), pages 219-237, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:22:y:2003:i:1:p:49-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.