IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v72y1996i1p27-49.html
   My bibliography  Save this article

Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes

Author

Listed:
  • Gordon, Stephen

    (Département d’économique, Université Laval)

  • Bélanger, Gilles

    (Département de sciences économiques, Université de Montréal)

Abstract

This survey provides an introduction to Markov Chain Monte Carlo (MCMC) sampling techniques and to their applications to Bayesian econometrics. In describing the Gibbs sampler and the Metropolis-Hastings algorithm, the emphasis is put on how these techniques can be put into practice; the theoretical foundations are outlined using the elementary properties of Markov chains. To illustrate the potential of MCMC techniques, we decribe several examples where their application has produced clear gains over classical methods of inference. Ce survol fournit une introduction aux techniques d’échantillonnage de type Markov Chain Monte Carlo (MCMC) et leurs applications à l’économétrie bayesienne. Par ce survol notre but n’est pas d’expliquer les fondements théoriques derrière les méthodes de type MCMC, mais bien de faire un exposé pratique des techniques qui s’y rapportent. Nous chercherons surtout à mettre en valeur la facilité et l’étendue des applications par l’utilisation d’exemples simples.

Suggested Citation

  • Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
  • Handle: RePEc:ris:actuec:v:72:y:1996:i:1:p:27-49
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/602194ar
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    3. Koop, Gary & Potter, Simon M, 2003. "Bayesian Analysis of Endogenous Delay Threshold Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 93-103, January.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    6. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    7. KOOP, Gary & OSIEWALSKI, Jacek & STEEL, Mark, 1995. "The Components of Output Growth : A Cross-Country Analysis," LIDAM Discussion Papers CORE 1995003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 1994. "Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 339-346, July.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    11. John Geweke, 1994. "Variable selection and model comparison in regression," Working Papers 539, Federal Reserve Bank of Minneapolis.
    12. Poirier, Dale J, 1988. "Frequentist and Subjectivist Perspectives on the Problems of Model Building in Economics," Journal of Economic Perspectives, American Economic Association, vol. 2(1), pages 121-144, Winter.
    13. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    14. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    15. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paquet, Marie-France & Bolduc, Denis, 2004. "Le problème des données longitudinales incomplètes : une nouvelle approche," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 341-361, Juin-Sept.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    4. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    5. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    6. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    7. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    8. Kleibergen, F.R. & Hoek, H., 1995. "Bayesian analysis of ARMA models using noninformative priors," Other publications TiSEM 81684a10-935f-49c4-b5ab-0, Tilburg University, School of Economics and Management.
    9. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    10. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    11. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    12. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    13. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    14. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    15. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    16. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    17. Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.
    18. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    19. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    20. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:72:y:1996:i:1:p:27-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.