IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p1174-1187.html
   My bibliography  Save this article

Targeted Local Support Vector Machine for Age-Dependent Classification

Author

Listed:
  • Tianle Chen
  • Yuanjia Wang
  • Huaihou Chen
  • Karen Marder
  • Donglin Zeng

Abstract

We develop methods to accurately predict whether presymptomatic individuals are at risk of a disease based on their various marker profiles, which offers an opportunity for early intervention well before definitive clinical diagnosis. For many diseases, existing clinical literature may suggest the risk of disease varies with some markers of biological and etiological importance, for example, age. To identify effective prediction rules using nonparametric decision functions, standard statistical learning approaches treat markers with clear biological importance (e.g., age) and other markers without prior knowledge on disease etiology interchangeably as input variables. Therefore, these approaches may be inadequate in singling out and preserving the effects from the biologically important variables, especially in the presence of potential noise markers. Using age as an example of a salient marker to receive special care in the analysis, we propose a local smoothing large margin classifier implemented with support vector machine (SVM) to construct effective age-dependent classification rules. The method adaptively adjusts age effect and separately tunes age and other markers to achieve optimal performance. We derive the asymptotic risk bound of the local smoothing SVM and perform extensive simulation studies to compare with standard approaches. We apply the proposed method to two studies of premanifest Huntington's disease (HD) subjects and controls to construct age-sensitive predictive scores for the risk of HD and risk of receiving HD diagnosis during the study period. Supplementary materials for this article are available online.

Suggested Citation

  • Tianle Chen & Yuanjia Wang & Huaihou Chen & Karen Marder & Donglin Zeng, 2014. "Targeted Local Support Vector Machine for Age-Dependent Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1174-1187, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1174-1187
    DOI: 10.1080/01621459.2014.881743
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.881743
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.881743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Wei & Kai Wang & Hui-Qi Qu & Haitao Zhang & Jonathan Bradfield & Cecilia Kim & Edward Frackleton & Cuiping Hou & Joseph T Glessner & Rosetta Chiavacci & Charles Stanley & Dimitri Monos & Struan F , 2009. "From Disease Association to Risk Assessment: An Optimistic View from Genome-Wide Association Studies on Type 1 Diabetes," PLOS Genetics, Public Library of Science, vol. 5(10), pages 1-11, October.
    2. Wang, Lan & Kai, Bo & Li, Runze, 2009. "Local Rank Inference for Varying Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1631-1645.
    3. Margaret Pepe & Holly Janes & Gary Longton & Wendy Leisenring & Polly Newcomb, 2004. "Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic or Prognostic Marker," UW Biostatistics Working Paper Series 1035, Berkeley Electronic Press.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Asuquo & Imeh Umoren & Francis Osang & Kingsley Attai, 2023. "A Machine Learning Framework for Length of Stay Minimization in Healthcare Emergency Department," Studies in Engineering and Technology, Redfame publishing, vol. 10(1), pages 117-117, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Ghosh & Michael S. Sabel, 2022. "A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 363-379, December.
    2. Anna-Karin Ivert & Marie Torstensson Levander & Juan Merlo, 2013. "Adolescents' Utilisation of Psychiatric Care, Neighbourhoods and Neighbourhood Socioeconomic Deprivation: A Multilevel Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    3. Ohad Manor & Eran Segal, 2013. "Predicting Disease Risk Using Bootstrap Ranking and Classification Algorithms," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-10, August.
    4. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    5. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    6. Holly Janes & Margaret S. Pepe, 2008. "Matching in Studies of Classification Accuracy: Implications for Analysis, Efficiency, and Assessment of Incremental Value," Biometrics, The International Biometric Society, vol. 64(1), pages 1-9, March.
    7. Carlos A Labarrere & John R Woods & James W Hardin & Beate R Jaeger & Marian Zembala & Mario C Deng & Ghassan S Kassab, 2014. "Early Inflammatory Markers Are Independent Predictors of Cardiac Allograft Vasculopathy in Heart-Transplant Recipients," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-18, December.
    8. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    9. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 36-48.
    10. Diego Tomassi & Liliana Forzani & Efstathia Bura & Ruth Pfeiffer, 2017. "Sufficient dimension reduction for censored predictors," Biometrics, The International Biometric Society, vol. 73(1), pages 220-231, March.
    11. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    12. Shang, Suoping & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression for semiparametric varying-coefficient models," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1815-1822.
    13. Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
    14. Anna Persmark & Maria Wemrell & Sofia Zettermark & George Leckie & S V Subramanian & Juan Merlo, 2019. "Precision public health: Mapping socioeconomic disparities in opioid dispensations at Swedish pharmacies by Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA)," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-21, August.
    15. Michael Lebenbaum & Osvaldo Espin-Garcia & Yi Li & Laura C Rosella, 2018. "Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
    16. Michael King & Louise Marston & Igor Švab & Heidi-Ingrid Maaroos & Mirjam I Geerlings & Miguel Xavier & Vicente Benjamin & Francisco Torres-Gonzalez & Juan Angel Bellon-Saameno & Danica Rotar & Anu Al, 2011. "Development and Validation of a Risk Model for Prediction of Hazardous Alcohol Consumption in General Practice Attendees: The PredictAL Study," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    17. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.
    18. Sebastian Okser & Tapio Pahikkala & Antti Airola & Tapio Salakoski & Samuli Ripatti & Tero Aittokallio, 2014. "Regularized Machine Learning in the Genetic Prediction of Complex Traits," PLOS Genetics, Public Library of Science, vol. 10(11), pages 1-9, November.
    19. Fagrell Trygg, Nadja & Månsdotter, Anna & Gustafsson, Per E., 2021. "Intersectional inequalities in mental health across multiple dimensions of inequality in the Swedish adult population," Social Science & Medicine, Elsevier, vol. 283(C).
    20. Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1174-1187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.