IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v132y2007i1p291-305.html
   My bibliography  Save this article

Bargaining in committees as an extension of Nash's bargaining theory

Author

Listed:
  • Laruelle, Annick
  • Valenciano, Federico

Abstract

This paper addresses the following issue: if a set of agents bargain on a set of feasible alternatives ‘in the shadow' of a voting rule, that is, any agreement can be enforced if a ‘winning coalition' supports it, what general agreements are likely to arise? In other words: what influence can the voting rule used to settle (possibly nonunanimous) agreements have on the outcome of consensus? We model the situation as an extension of the Nash bargaining problem in which an arbitrary voting rule replaces unanimity. In this setting a natural extension of Nash's solution is characterized.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
  • Handle: RePEc:eee:jetheo:v:132:y:2007:i:1:p:291-305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(05)00124-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Peleg,Bezalel, 2008. "Game Theoretic Analysis of Voting in Committees," Cambridge Books, Cambridge University Press, number 9780521074650, September.
    3. Alvin E. Roth, 1977. "Individual Rationality and Nash's Solution to the Bargaining Problem," Mathematics of Operations Research, INFORMS, vol. 2(1), pages 64-65, February.
    4. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    5. Baron, David P. & Ferejohn, John A., 1989. "Bargaining in Legislatures," American Political Science Review, Cambridge University Press, vol. 83(4), pages 1181-1206, December.
    6. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    7. Marco Mariotti, 1999. "Fair Bargains: Distributive Justice and Nash Bargaining Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 733-741.
    8. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    9. John C. Harsanyi & Reinhard Selten, 1972. "A Generalized Nash Solution for Two-Person Bargaining Games with Incomplete Information," Management Science, INFORMS, vol. 18(5-Part-2), pages 80-106, January.
    10. Hart, Sergiu, 1985. "An Axiomatization of Harsanyi's Nontransferable Utility Solution," Econometrica, Econometric Society, vol. 53(6), pages 1295-1313, November.
    11. Federico Valenciano & Annick Laruelle, 2004. "Bargaining, Voting, And Value," Working Papers. Serie AD 2004-17, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(4), pages 389-407.
    13. Aumann, Robert J, 1985. "An Axiomatization of the Non-transferable Utility Value," Econometrica, Econometric Society, vol. 53(3), pages 599-612, May.
    14. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    15. Ken Binmore, 1998. "Game Theory and the Social Contract - Vol. 2: Just Playing," MIT Press Books, The MIT Press, edition 1, volume 2, number 0262024446, April.
    16. Kalai, Ehud & Samet, Dov, 1985. "Monotonic Solutions to General Cooperative Games," Econometrica, Econometric Society, vol. 53(2), pages 307-327, March.
    17. Pradeep Dubey & Abraham Neyman & Robert James Weber, 1981. "Value Theory Without Efficiency," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 122-128, February.
    18. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    19. McLean, Richard P., 2002. "Values of non-transferable utility games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 55, pages 2077-2120, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Giannatale, Paolo & Passarelli, Francesco, 2013. "Voting chances instead of voting weights," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 164-173.
    2. Maria Montero & Martin Sefton & Ping Zhang, 2008. "Enlargement and the balance of power: an experimental study," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(1), pages 69-87, January.
    3. Ching-jen Sun, 2018. "The bargaining correspondence: when Edgeworth meets Nash," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(2), pages 337-359, August.
    4. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    5. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.
    6. Herings, P.J.J. & Predtetchinski, A., 2011. "Procedurally fair income taxation schemes," Research Memorandum 035, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Volker Britz & P. Herings & Arkadi Predtetchinski, 2013. "A bargaining theory of the firm," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 45-75, September.
    8. Annick Laruelle & Federico Valenciano, 2008. "Bargaining in Committees of Representatives," Journal of Theoretical Politics, , vol. 20(1), pages 93-106, January.
    9. Ines Lindner, 2008. "The power of a collectivity to act in weighted voting games with many small voters," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(4), pages 581-601, May.
    10. Kurz, Sascha & Maaser, Nicola & Napel, Stefan, 2018. "Fair representation and a linear Shapley rule," Games and Economic Behavior, Elsevier, vol. 108(C), pages 152-161.
    11. Annick Laruelle & Federico Valenciano, 2010. "Egalitarianism and utilitarianism in committees of representatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(2), pages 221-243, July.
    12. Kawamori, Tomohiko, 2014. "A noncooperative foundation of the asymmetric Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 12-15.
    13. Martin, Mathieu & Nganmeni, Zephirin & Tchantcho, Bertrand, 2017. "The Owen and Shapley spatial power indices: A comparison and a generalization," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 10-19.
    14. P. Jean-Jacques Herings & A. Predtetchinski, 2016. "Bargaining under monotonicity constraints," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(1), pages 221-243, June.
    15. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
    16. Britz, V. & Herings, P.J.J. & Predtetchinski, A., 2010. "Theory of the firm: bargaining and competitive equilibrium," Research Memorandum 057, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    17. Laruelle, Annick & Valenciano, Federico, 2009. "Cooperative bargaining foundations of the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 65(1), pages 242-255, January.
    18. Federico Valenciano & Annick Laruelle, 2005. "Bargaining In Committees Of Representatives: The Optimal Voting Rule," Working Papers. Serie AD 2005-24, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Valenciano & Annick Laruelle, 2004. "Bargaining, Voting, And Value," Working Papers. Serie AD 2004-17, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    2. Laruelle, Annick & Valenciano, Federico, 2009. "Cooperative bargaining foundations of the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 65(1), pages 242-255, January.
    3. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.
    4. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    5. Akira Okada, 2015. "Cooperation and Institution in Games," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 1-32, March.
    6. Emililo Calvo, 2004. "Single NTU-value solutions," Game Theory and Information 0405004, University Library of Munich, Germany, revised 10 Jun 2004.
    7. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    8. Bergantinos, G. & Casas-Mendez, B. & Fiestras-Janeiro, M.G. & Vidal-Puga, J.J., 2007. "A solution for bargaining problems with coalition structure," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 35-58, July.
    9. Gustavo Bergantiños & Balbina Casas- Méndez & Gloria Fiestras- Janeiro & Juan Vidal-Puga, 2005. "A Focal-Point Solution for Bargaining Problems with Coalition Structure," Game Theory and Information 0511006, University Library of Munich, Germany.
    10. Takeuchi, Ai & Veszteg, Róbert F. & Kamijo, Yoshio & Funaki, Yukihiko, 2022. "Bargaining over a jointly produced pie: The effect of the production function on bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 134(C), pages 169-198.
    11. Masanori Mitsutsune & Takanori Adachi, 2014. "Estimating noncooperative and cooperative models of bargaining: an empirical comparison," Empirical Economics, Springer, vol. 47(2), pages 669-693, September.
    12. Binmore, Ken & Osborne, Martin J. & Rubinstein, Ariel, 1992. "Noncooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 7, pages 179-225, Elsevier.
    13. Dietzenbacher, Bas & Yanovskaya, Elena, 2023. "The equal split-off set for NTU-games," Mathematical Social Sciences, Elsevier, vol. 121(C), pages 61-67.
    14. Ronghuo Zheng & Tinglong Dai & Katia Sycara & Nilanjan Chakraborty, 2016. "Automated Multilateral Negotiation on Multiple Issues with Private Information," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 612-628, November.
    15. Spulber, Daniel F., 2016. "Patent licensing and bargaining with innovative complements and substitutes," Research in Economics, Elsevier, vol. 70(4), pages 693-713.
    16. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    17. Emilio Calvo, 2008. "Random marginal and random removal values," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 533-563, December.
    18. Joan-Maria Esteban & József Sákovics, 2005. "A Theory of Agreements in the Shadow of Conflict," Working Papers 255, Barcelona School of Economics.
    19. Eric van Damme, 1984. "The Nash Bargaining Solution is Optimal," Discussion Papers 597, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Harstad, Bård, 2023. "Pledge-and-review bargaining," Journal of Economic Theory, Elsevier, vol. 207(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:132:y:2007:i:1:p:291-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.