IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0185856.html
   My bibliography  Save this article

Trade-off between jerk and time headway as an indicator of driving style

Author

Listed:
  • Teemu H Itkonen
  • Jami Pekkanen
  • Otto Lappi
  • Iisakki Kosonen
  • Tapio Luttinen
  • Heikki Summala

Abstract

Variation in longitudinal control in driving has been discussed in both traffic psychology and transportation engineering. Traffic psychologists have concerned themselves with “driving style”, a habitual form of behavior marked by it’s stability, and its basis in psychological traits. Those working in traffic microsimulation have searched for quantitative ways to represent different driver-car systems in car following models. There has been unfortunately little overlap or theoretical consistency between these literatures. Here, we investigated relationships between directly observable measures (time headway, acceleration and jerk) in a simulated driving task where the driving context, vehicle and environment were controlled. We found individual differences in the way a trade-off was made between close but jerky vs. far and smooth following behavior. We call these “intensive” and “calm” driving, and suggest this trade-off can serve as an indicator of a possible latent factor underlying driving style. We posit that pursuing such latent factors for driving style may have implications for modelling driver heterogeneity across various domains in traffic simulation.

Suggested Citation

  • Teemu H Itkonen & Jami Pekkanen & Otto Lappi & Iisakki Kosonen & Tapio Luttinen & Heikki Summala, 2017. "Trade-off between jerk and time headway as an indicator of driving style," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0185856
    DOI: 10.1371/journal.pone.0185856
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185856
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0185856&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0185856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    3. Shuaiyang Jiao & Shengrui Zhang & Bei Zhou & Zixuan Zhang & Liyuan Xue, 2020. "An Extended Car-Following Model Considering the Drivers’ Characteristics under a V2V Communication Environment," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    4. Sauer, Craig & Andersen, George J. & Saidpour, Asad, 2004. "Detection and Avoidance of Collisions: the REACT Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7st785tt, Institute of Transportation Studies, UC Berkeley.
    5. Xiaomei, Zhao & Ziyou, Gao, 2007. "The stability analysis of the full velocity and acceleration velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 679-686.
    6. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    7. Lo, Hong K. & Lin, Wei-Hua & Liao, Lawrence C. & Chang, Elbert & Tsao, Jacob, 1997. "A Comparison of Traffic Models: Part II Results," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8x1594kk, Institute of Transportation Studies, UC Berkeley.
    8. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    9. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    10. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    11. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    12. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    13. Li, Xiaopeng, 2022. "Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 1-18.
    14. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    15. Kok Mun Ng & Mamun Bin Ibne Reaz, 2016. "Platoon Interactions and Real-World Traffic Simulation and Validation Based on the LWR-IM," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    16. Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    17. Yu (Marco) Nie & H. Michael Zhang, 2008. "Oscillatory Traffic Flow Patterns Induced by Queue Spillback in a Simple Road Network," Transportation Science, INFORMS, vol. 42(2), pages 236-248, May.
    18. Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    19. Ahn, Soyoung & Cassidy, Michael J., 2002. "Identifying Density-Flow Relations on Arterial Surface Streets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8685r9ks, Institute of Transportation Studies, UC Berkeley.
    20. Daiheng Ni & John D. Leonard & Chaoqun Jia & Jianqiang Wang, 2016. "Vehicle Longitudinal Control and Traffic Stream Modeling," Transportation Science, INFORMS, vol. 50(3), pages 1016-1031, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0185856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.