IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt8685r9ks.html
   My bibliography  Save this paper

Identifying Density-Flow Relations on Arterial Surface Streets

Author

Listed:
  • Ahn, Soyoung
  • Cassidy, Michael J.

Abstract

A simple car-following rule was verified by studying vehicles discharging from long queues at signalized intersections. These observations indicated that the time-space trajectory of a jth vehicle discharging on a homogeneous intersection approach was essentially the same as the j−1th vehicle except for a translation in space and time. This is in agreement with a simplified theory proposed by G.F. Newell. The finding indicates that the congested branch of a density-flow curve is linear in form.

Suggested Citation

  • Ahn, Soyoung & Cassidy, Michael J., 2002. "Identifying Density-Flow Relations on Arterial Surface Streets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8685r9ks, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt8685r9ks
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/8685r9ks.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cassidy, Michael J. & Windover, John R., 1998. "Driver memory: Motorist selection and retention of individualized headways in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 129-137, February.
    2. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    3. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    2. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    3. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    4. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    5. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    6. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    7. Mauch, Michael, 2002. "Analyses of Start-Stop Waves in Congested Freeway Traffic," University of California Transportation Center, Working Papers qt9kb9x6n5, University of California Transportation Center.
    8. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    9. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    10. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    11. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    12. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    13. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    14. Jansuwan, Sarawut & Liu, Zhaocai & Song, Ziqi & Chen, Anthony, 2021. "An evaluation framework of automated electric transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    15. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    16. Kalathil, Dileep & Kurzhanskiy, Alex A. & Varaiya, Pravin, 2017. "Sustainable Operation of Arterial Networks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5js550jt, Institute of Transportation Studies, UC Berkeley.
    17. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    18. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    19. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    20. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt8685r9ks. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.