IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183464.html
   My bibliography  Save this article

Predicting forest insect flight activity: A Bayesian network approach

Author

Listed:
  • Stephen M Pawson
  • Bruce G Marcot
  • Owen G Woodberry

Abstract

Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model’s predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways.

Suggested Citation

  • Stephen M Pawson & Bruce G Marcot & Owen G Woodberry, 2017. "Predicting forest insect flight activity: A Bayesian network approach," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-22, September.
  • Handle: RePEc:plo:pone00:0183464
    DOI: 10.1371/journal.pone.0183464
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183464
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183464&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    2. Williams, Byron K. & Eaton, Mitchell J. & Breininger, David R., 2011. "Adaptive resource management and the value of information," Ecological Modelling, Elsevier, vol. 222(18), pages 3429-3436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    2. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.
    3. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    4. O'Brien, G. C. & Dickens, Chris & Hines, E. & Wepener, V. & Stassen, R. & Landis, W. G., 2017. "A regional scale ecological risk framework for environmental flow evaluations," Papers published in Journals (Open Access), International Water Management Institute, pages 22(2):957-9.
    5. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    6. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    7. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    8. Thomas Dufhues & Gertrud Buchenrieder & Zhanli Sun, 2021. "Exploring Policy Options in Regulating Rural–Urban Migration with a Bayesian Network: A Case Study in Kazakhstan," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(3), pages 553-577, June.
    9. Johnson, Fred A. & Jensen, Gitte H. & Madsen, Jesper & Williams, Byron K., 2014. "Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population," Ecological Modelling, Elsevier, vol. 273(C), pages 186-199.
    10. Pham, Hung Vuong & Sperotto, Anna & Furlan, Elisa & Torresan, Silvia & Marcomini, Antonio & Critto, Andrea, 2021. "Integrating Bayesian Networks into ecosystem services assessment to support water management at the river basin scale," Ecosystem Services, Elsevier, vol. 50(C).
    11. David Breininger & Brean Duncan & Mitchell Eaton & Fred Johnson & James Nichols, 2014. "Integrating Land Cover Modeling and Adaptive Management to Conserve Endangered Species and Reduce Catastrophic Fire Risk," Land, MDPI, vol. 3(3), pages 1-24, July.
    12. Chen, Baili & Duan, Quntao & Zhao, Wenzhi & Wang, Lixin & Zhong, Yanxia & Zhuang, Yanli & Chang, Xueli & Dong, Chunyuan & Du, Wentao & Luo, Lihui, 2023. "Oasis sustainability is related to water supply mode," Agricultural Water Management, Elsevier, vol. 290(C).
    13. Xiao, Xiao & Seekamp, Erin & van der Burg, Max Post & Eaton, Mitchell & Fatorić, Sandra & McCreary, Allie, 2019. "Optimizing historic preservation under climate change: Decision support for cultural resource adaptation planning in national parks," Land Use Policy, Elsevier, vol. 83(C), pages 379-389.
    14. Kimberley Kolb Ayre & Colleen A. Caldwell & Jonah Stinson & Wayne G. Landis, 2014. "Analysis of Regional Scale Risk of Whirling Disease in Populations of Colorado and Rio Grande Cutthroat Trout Using a Bayesian Belief Network Model," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1589-1605, September.
    15. Brownson, Katherine & Fowler, Laurie, 2020. "Evaluating how we evaluate success: Monitoring, evaluation and adaptive management in Payments for Watershed Services programs," Land Use Policy, Elsevier, vol. 94(C).
    16. Alessandro Pagano & Irene Pluchinotta & Raffaele Giordano & Anna Bruna Petrangeli & Umberto Fratino & Michele Vurro, 2018. "Dealing with Uncertainty in Decision-Making for Drinking Water Supply Systems Exposed to Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2131-2145, April.
    17. Luhede, Amelie & Yaqine, Houda & Bahmanbijari, Reza & Römer, Michael & Upmann, Thorsten, 2024. "The value of information in water quality monitoring and management," Ecological Economics, Elsevier, vol. 219(C).
    18. Debarun Bhattacharjya & Jo Eidsvik & Tapan Mukerji, 2013. "The Value of Information in Portfolio Problems with Dependent Projects," Decision Analysis, INFORMS, vol. 10(4), pages 341-351, December.
    19. Barton, David N. & Benjamin, Tamara & Cerdán, Carlos R. & DeClerck, Fabrice & Madsen, Anders L. & Rusch, Graciela M. & Salazar, Álvaro G. & Sanchez, Dalia & Villanueva, Cristóbal, 2016. "Assessing ecosystem services from multifunctional trees in pastures using Bayesian belief networks," Ecosystem Services, Elsevier, vol. 18(C), pages 165-174.
    20. Meagan J. Harris & Jonah Stinson & Wayne G. Landis, 2017. "A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury‐Contaminated Site," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1341-1357, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.