IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h048063.html
   My bibliography  Save this article

A regional scale ecological risk framework for environmental flow evaluations

Author

Listed:
  • O'Brien, G. C.
  • Dickens, Chris
  • Hines, E.
  • Wepener, V.
  • Stassen, R.
  • Landis, W. G.

Abstract

Recent developments in Environmental Flow (E-flow) frameworks advocate holistic, regional scale, probabilistic E-flow assessments that consider flow and non-flow drivers of change in socio-ecological context as best practice. Regional Scale ecological risk assessments of multiple sources, stressors and diverse ecosystems that address multiple social and ecological endpoints, have been undertaken internationally at different spatial scales using the relative-risk model since the mid 1990's. With the recent incorporation of Bayesian belief networks into the relative-risk model, a robust regional scale ecological risk assessment approach is available that can contribute to achieving the best practice recommendations of E-flow frameworks. PROBFLO is a regional scale, holistic E-flow assessment method that incorporates the relative-risk model and Bayesian belief networks (BN-RRM) into a transparent probabilistic modelling tool that addresses uncertainty explicitly. PROBFLO has been developed to holistically evaluate the socio-ecological consequences of historical, current and future altered flows in the context of non-flow drivers and generate E-flow requirements on regional scales spatial scales. The approach has been implemented in two regional scale case studies in Africa where its flexibility and functionality has been demonstrated. In both case studies the evidence based outcomes facilitated informed environmental management decision making, in the context of social and ecological aspirations. This paper presents the PROBFLO approach as applied to the Senqu River catchment in Lesotho and further developments and application in the Mara River catchment in Kenya and Tanzania. The ten BN-RRM procedural steps incorporated in PROBFLO are demonstrated with examples from both case studies. Outcomes allowed stakeholders to consider sustainable social and ecological E-flow trade-offs between social and ecological endpoints. PROBFLO can be incorporated into adaptive management processes and contribute to the sustainable management of the use and protection of water resources.

Suggested Citation

  • O'Brien, G. C. & Dickens, Chris & Hines, E. & Wepener, V. & Stassen, R. & Landis, W. G., 2017. "A regional scale ecological risk framework for environmental flow evaluations," Papers published in Journals (Open Access), International Water Management Institute, pages 22(2):957-9.
  • Handle: RePEc:iwt:jounls:h048063
    DOI: 10.5194/hess-2017-37
    as

    Download full text from publisher

    File URL: http://www.hydrol-earth-syst-sci-discuss.net/hess-2017-37/hess-2017-37.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5194/hess-2017-37?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    2. Michael E. McClain & Japhet J. Kashaigili & Preksedis Ndomba, 2013. "Environmental flow assessment as a tool for achieving environmental objectives of African water policy, with examples from East Africa," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(4), pages 650-665, December.
    3. Bruce Mitchell, 2005. "Integrated Water Resource Management, Institutional Arrangements, and Land-Use Planning," Environment and Planning A, , vol. 37(8), pages 1335-1352, August.
    4. D. Isaak & S. Wollrab & D. Horan & G. Chandler, 2012. "Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes," Climatic Change, Springer, vol. 113(2), pages 499-524, July.
    5. George Atisa & Mahadev Bhat & Michael McClain, 2014. "Economic Assessment of Best Management Practices in the Mara River Basin: Toward Implementing Payment for Watershed Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1751-1766, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Patrick & Lalita Bharadwaj, 2016. "Mining and campesino engagement: an opportunity for integrated water resources management in Ancash, Peru," Water International, Taylor & Francis Journals, vol. 41(3), pages 468-482, May.
    2. Busscher, Tim & Tillema, Taede & Arts, Jos, 2015. "In search of sustainable road infrastructure planning: How can we build on historical policy shifts?," Transport Policy, Elsevier, vol. 42(C), pages 42-51.
    3. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    4. David A Keiser & Joseph S Shapiro, 2019. "Consequences of the Clean Water Act and the Demand for Water Quality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 349-396.
    5. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.
    6. Rodrigues, Carla & Fidélis, Teresa, 2019. "The integration of land use in public water reservoirs plans – A critical analysis of the regulatory approaches used for the protection of banks," Land Use Policy, Elsevier, vol. 81(C), pages 762-775.
    7. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    8. Leslie A. Jones & Clint C. Muhlfeld & Lucy A. Marshall, 2017. "Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada," Climatic Change, Springer, vol. 144(4), pages 641-655, October.
    9. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    10. Danijela Markovic & Ulrike Scharfenberger & Stefan Schmutz & Florian Pletterbauer & Christian Wolter, 2013. "Variability and alterations of water temperatures across the Elbe and Danube River Basins," Climatic Change, Springer, vol. 119(2), pages 375-389, July.
    11. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    12. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    13. Thomas Dufhues & Gertrud Buchenrieder & Zhanli Sun, 2021. "Exploring Policy Options in Regulating Rural–Urban Migration with a Bayesian Network: A Case Study in Kazakhstan," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(3), pages 553-577, June.
    14. Qin Tu & Hong Li & Xinkun Wang & Chao Chen & Yin Luo & Frank Dwomoh, 2014. "Multi-Criteria Evaluation of Small-Scale Sprinkler Irrigation Systems Using Grey Relational Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4665-4684, October.
    15. Nicole Durfee & Carlos G. Ochoa & Gerrad Jones, 2021. "Stream Temperature and Environment Relationships in a Semiarid Riparian Corridor," Land, MDPI, vol. 10(5), pages 1-22, May.
    16. Pham, Hung Vuong & Sperotto, Anna & Furlan, Elisa & Torresan, Silvia & Marcomini, Antonio & Critto, Andrea, 2021. "Integrating Bayesian Networks into ecosystem services assessment to support water management at the river basin scale," Ecosystem Services, Elsevier, vol. 50(C).
    17. Cong Dong & Gordon Huang & Guanhui Cheng & Shan Zhao, 2018. "Water Resources and Farmland Management in the Songhua River Watershed under Interval and Fuzzy Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4177-4200, October.
    18. Mary T. Huisenga & William R. Travis, 2015. "Climate variability and the sensitivity of downstream temperature to treated wastewater discharge: a simulation analysis," Environment Systems and Decisions, Springer, vol. 35(1), pages 11-21, March.
    19. Chen, Baili & Duan, Quntao & Zhao, Wenzhi & Wang, Lixin & Zhong, Yanxia & Zhuang, Yanli & Chang, Xueli & Dong, Chunyuan & Du, Wentao & Luo, Lihui, 2023. "Oasis sustainability is related to water supply mode," Agricultural Water Management, Elsevier, vol. 290(C).
    20. Rebekah Brown & Richard Ashley & Megan Farrelly, 2011. "Political and Professional Agency Entrapment: An Agenda for Urban Water Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 4037-4050, December.

    More about this item

    Keywords

    Environmental flows;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h048063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.