IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i9p1589-1605.html
   My bibliography  Save this article

Analysis of Regional Scale Risk of Whirling Disease in Populations of Colorado and Rio Grande Cutthroat Trout Using a Bayesian Belief Network Model

Author

Listed:
  • Kimberley Kolb Ayre
  • Colleen A. Caldwell
  • Jonah Stinson
  • Wayne G. Landis

Abstract

Introduction and spread of the parasite Myxobolus cerebralis, the causative agent of whirling disease, has contributed to the collapse of wild trout populations throughout the intermountain west. Of concern is the risk the disease may have on conservation and recovery of native cutthroat trout. We employed a Bayesian belief network to assess probability of whirling disease in Colorado River and Rio Grande cutthroat trout (Oncorhynchus clarkii pleuriticus and Oncorhynchus clarkii virginalis, respectively) within their current ranges in the southwest United States. Available habitat (as defined by gradient and elevation) for intermediate oligochaete worm host, Tubifex tubifex, exerted the greatest influence on the likelihood of infection, yet prevalence of stream barriers also affected the risk outcome. Management areas that had the highest likelihood of infected Colorado River cutthroat trout were in the eastern portion of their range, although the probability of infection was highest for populations in the southern, San Juan subbasin. Rio Grande cutthroat trout had a relatively low likelihood of infection, with populations in the southernmost Pecos management area predicted to be at greatest risk. The Bayesian risk assessment model predicted the likelihood of whirling disease infection from its principal transmission vector, fish movement, and suggested that barriers may be effective in reducing risk of exposure to native trout populations. Data gaps, especially with regard to location of spawning, highlighted the importance in developing monitoring plans that support future risk assessments and adaptive management for subspecies of cutthroat trout.

Suggested Citation

  • Kimberley Kolb Ayre & Colleen A. Caldwell & Jonah Stinson & Wayne G. Landis, 2014. "Analysis of Regional Scale Risk of Whirling Disease in Populations of Colorado and Rio Grande Cutthroat Trout Using a Bayesian Belief Network Model," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1589-1605, September.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:9:p:1589-1605
    DOI: 10.1111/risa.12189
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12189
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    2. Terry Walshe & Mark Burgman, 2010. "A Framework for Assessing and Managing Risks Posed by Emerging Diseases," Risk Analysis, John Wiley & Sons, vol. 30(2), pages 236-249, February.
    3. Isabelle Albert & Emmanuel Grenier & Jean‐Baptiste Denis & Judith Rousseau, 2008. "Quantitative Risk Assessment from Farm to Fork and Beyond: A Global Bayesian Approach Concerning Food‐Borne Diseases," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 557-571, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    2. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.
    3. Leonel Lara-Estrada & Livia Rasche & L. Enrique Sucar & Uwe A. Schneider, 2018. "Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks," Land, MDPI, vol. 7(1), pages 1-13, January.
    4. Christian P. Robert & Judith Rousseau, 2010. "On Bayesian Data Analysis," Working Papers 2010-31, Center for Research in Economics and Statistics.
    5. O'Brien, G. C. & Dickens, Chris & Hines, E. & Wepener, V. & Stassen, R. & Landis, W. G., 2017. "A regional scale ecological risk framework for environmental flow evaluations," Papers published in Journals (Open Access), International Water Management Institute, pages 22(2):957-9.
    6. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    7. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    8. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    9. Thomas Dufhues & Gertrud Buchenrieder & Zhanli Sun, 2021. "Exploring Policy Options in Regulating Rural–Urban Migration with a Bayesian Network: A Case Study in Kazakhstan," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(3), pages 553-577, June.
    10. Pham, Hung Vuong & Sperotto, Anna & Furlan, Elisa & Torresan, Silvia & Marcomini, Antonio & Critto, Andrea, 2021. "Integrating Bayesian Networks into ecosystem services assessment to support water management at the river basin scale," Ecosystem Services, Elsevier, vol. 50(C).
    11. Chen, Baili & Duan, Quntao & Zhao, Wenzhi & Wang, Lixin & Zhong, Yanxia & Zhuang, Yanli & Chang, Xueli & Dong, Chunyuan & Du, Wentao & Luo, Lihui, 2023. "Oasis sustainability is related to water supply mode," Agricultural Water Management, Elsevier, vol. 290(C).
    12. J. H. Smid & A. N. Swart & A. H. Havelaar & A. Pielaat, 2011. "A Practical Framework for the Construction of a Biotracing Model: Application to Salmonella in the Pork Slaughter Chain," Risk Analysis, John Wiley & Sons, vol. 31(9), pages 1434-1450, September.
    13. Alessandro Pagano & Irene Pluchinotta & Raffaele Giordano & Anna Bruna Petrangeli & Umberto Fratino & Michele Vurro, 2018. "Dealing with Uncertainty in Decision-Making for Drinking Water Supply Systems Exposed to Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2131-2145, April.
    14. Barton, David N. & Benjamin, Tamara & Cerdán, Carlos R. & DeClerck, Fabrice & Madsen, Anders L. & Rusch, Graciela M. & Salazar, Álvaro G. & Sanchez, Dalia & Villanueva, Cristóbal, 2016. "Assessing ecosystem services from multifunctional trees in pastures using Bayesian belief networks," Ecosystem Services, Elsevier, vol. 18(C), pages 165-174.
    15. Meagan J. Harris & Jonah Stinson & Wayne G. Landis, 2017. "A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury‐Contaminated Site," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1341-1357, July.
    16. Pieter Busschaert & Annemie H. Geeraerd & Mieke Uyttendaele & Jan F. Van Impe, 2011. "Sensitivity Analysis of a Two‐Dimensional Quantitative Microbiological Risk Assessment: Keeping Variability and Uncertainty Separated," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1295-1307, August.
    17. Henry Musoke Semakula & Guobao Song & Simon Peter Achuu & Miaogen Shen & Jingwen Chen & Paul Isolo Mukwaya & Martin Oulu & Patrick Mwanzia Mwendwa & Jannette Abalo & Shushen Zhang, 2017. "Prediction of future malaria hotspots under climate change in sub-Saharan Africa," Climatic Change, Springer, vol. 143(3), pages 415-428, August.
    18. Giordano, Raffaele & D’Agostino, Daniela & Apollonio, Ciro & Scardigno, Alessandra & Pagano, Alessandro & Portoghese, Ivan & Lamaddalena, Nicola & Piccinni, Alberto F. & Vurro, Michele, 2015. "Evaluating acceptability of groundwater protection measures under different agricultural policies," Agricultural Water Management, Elsevier, vol. 147(C), pages 54-66.
    19. Marcot, Bruce G., 2017. "Common quandaries and their practical solutions in Bayesian network modeling," Ecological Modelling, Elsevier, vol. 358(C), pages 1-9.
    20. Forio, Marie Anne Eurie & Landuyt, Dries & Bennetsen, Elina & Lock, Koen & Nguyen, Thi Hanh Tien & Ambarita, Minar Naomi Damanik & Musonge, Peace Liz Sasha & Boets, Pieter & Everaert, Gert & Dominguez, 2015. "Bayesian belief network models to analyse and predict ecological water quality in rivers," Ecological Modelling, Elsevier, vol. 312(C), pages 222-238.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:9:p:1589-1605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.