IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0181762.html
   My bibliography  Save this article

Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects

Author

Listed:
  • Ruben Fossion
  • Ana Leonor Rivera
  • Juan C Toledo-Roy
  • Jason Ellis
  • Maia Angelova

Abstract

Circadian rhythms become less dominant and less regular with chronic-degenerative disease, such that to accurately assess these pathological conditions it is important to quantify not only periodic characteristics but also more irregular aspects of the corresponding time series. Novel data-adaptive techniques, such as singular spectrum analysis (SSA), allow for the decomposition of experimental time series, in a model-free way, into a trend, quasiperiodic components and noise fluctuations. We compared SSA with the traditional techniques of cosinor analysis and intradaily variability using 1-week continuous actigraphy data in young adults with acute insomnia and healthy age-matched controls. The findings suggest a small but significant delay in circadian components in the subjects with acute insomnia, i.e. a larger acrophase, and alterations in the day-to-day variability of acrophase and amplitude. The power of the ultradian components follows a fractal 1/f power law for controls, whereas for those with acute insomnia this power law breaks down because of an increased variability at the 90min time scale, reminiscent of Kleitman’s basic rest-activity (BRAC) cycles. This suggests that for healthy sleepers attention and activity can be sustained at whatever time scale required by circumstances, whereas for those with acute insomnia this capacity may be impaired and these individuals need to rest or switch activities in order to stay focused. Traditional methods of circadian rhythm analysis are unable to detect the more subtle effects of day-to-day variability and ultradian rhythm fragmentation at the specific 90min time scale.

Suggested Citation

  • Ruben Fossion & Ana Leonor Rivera & Juan C Toledo-Roy & Jason Ellis & Maia Angelova, 2017. "Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0181762
    DOI: 10.1371/journal.pone.0181762
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181762
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0181762&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0181762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    2. Hu, Kun & Ivanov, Plamen Ch. & Chen, Zhi & Hilton, Michael F. & Stanley, H.Eugene & Shea, Steven A., 2004. "Non-random fluctuations and multi-scale dynamics regulation of human activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 307-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keerati Suibkitwanchai & Adam M Sykulski & Guillermo Perez Algorta & Daniel Waller & Catherine Walshe, 2020. "Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    2. M. Atikur Rahman Khan & D.S. Poskitt, 2014. "On The Theory and Practice of Singular Spectrum Analysis Forecasting," Monash Econometrics and Business Statistics Working Papers 3/14, Monash University, Department of Econometrics and Business Statistics.
    3. repec:rdg:wpaper:em-dp2013-04 is not listed on IDEAS
    4. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    5. Lahmiri, Salim, 2018. "Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 444-451.
    6. Th I Götz & G Lahmer & V Strnad & Ch Bert & B Hensel & A M Tomé & E W Lang, 2017. "A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-31, September.
    7. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    8. Huang, Xu & Hassani, Hossein & Ghodsi, Mansi & Mukherjee, Zinnia & Gupta, Rangan, 2017. "Do trend extraction approaches affect causality detection in climate change studies?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 604-624.
    9. Hassani, Hossein & Huang, Xu & Gupta, Rangan & Ghodsi, Mansi, 2016. "Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 54-65.
    10. Carlos Alberto Orge Pinheiro & Valter de Senna, 2016. "Price Forecasting Through Multivariate Spectral Analysis: Evidence for Commodities of BMeFbovespa," Brazilian Business Review, Fucape Business School, vol. 13(5), pages 129-157, September.
    11. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    12. Zhang, Kequan & Qu, Zongxi & Dong, Yunxuan & Lu, Haiyan & Leng, Wennan & Wang, Jianzhou & Zhang, Wenyu, 2019. "Research on a combined model based on linear and nonlinear features - A case study of wind speed forecasting," Renewable Energy, Elsevier, vol. 130(C), pages 814-830.
    13. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    14. M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
    15. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    16. Stelios M. Potirakis & Masashi Hayakawa & Alexander Schekotov, 2017. "Fractal analysis of the ground-recorded ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (M W = 9): discriminating possible earthquake precursors from space-sourced disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 59-86, January.
    17. Najafi, Nadia & Paulsen, Uwe Schmidt, 2017. "Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique," Energy, Elsevier, vol. 125(C), pages 405-416.
    18. Marinoiu Cristian, 2018. "Average Monthly Temperature Forecast In Romania By Using Singular Spectrum Analysis," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 48-57, June.
    19. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    20. Damian G Kelty-Stephen, 2018. "Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    21. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0181762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.