IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0239368.html
   My bibliography  Save this article

Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia

Author

Listed:
  • Keerati Suibkitwanchai
  • Adam M Sykulski
  • Guillermo Perez Algorta
  • Daniel Waller
  • Catherine Walshe

Abstract

Accelerometry data has been widely used to measure activity and the circadian rhythm of individuals across the health sciences, in particular with people with advanced dementia. Modern accelerometers can record continuous observations on a single individual for several days at a sampling frequency of the order of one hertz. Such rich and lengthy data sets provide new opportunities for statistical insight, but also pose challenges in selecting from a wide range of possible summary statistics, and how the calculation of such statistics should be optimally tuned and implemented. In this paper, we build on existing approaches, as well as propose new summary statistics, and detail how these should be implemented with high frequency accelerometry data. We test and validate our methods on an observed data set from 26 recordings from individuals with advanced dementia and 14 recordings from individuals without dementia. We study four metrics: Interdaily stability (IS), intradaily variability (IV), the scaling exponent from detrended fluctuation analysis (DFA), and a novel nonparametric estimator which we call the proportion of variance (PoV), which calculates the strength of the circadian rhythm using spectral density estimation. We perform a detailed analysis indicating how the time series should be optimally subsampled to calculate IV, and recommend a subsampling rate of approximately 5 minutes for the dataset that has been studied. In addition, we propose the use of the DFA scaling exponent separately for daytime and nighttime, to further separate effects between individuals. We compare the relationships between all these methods and show that they effectively capture different features of the time series.

Suggested Citation

  • Keerati Suibkitwanchai & Adam M Sykulski & Guillermo Perez Algorta & Daniel Waller & Catherine Walshe, 2020. "Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0239368
    DOI: 10.1371/journal.pone.0239368
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239368
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239368&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0239368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruben Fossion & Ana Leonor Rivera & Juan C Toledo-Roy & Jason Ellis & Maia Angelova, 2017. "Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    2. Robert T. Krafty & Haoyi Fu & Jessica L. Graves & Scott A. Bruce & Martica H. Hall & Stephen F. Smagula, 2019. "Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 314-333, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239368. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.