IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v337y2004i1p307-318.html
   My bibliography  Save this article

Non-random fluctuations and multi-scale dynamics regulation of human activity

Author

Listed:
  • Hu, Kun
  • Ivanov, Plamen Ch.
  • Chen, Zhi
  • Hilton, Michael F.
  • Stanley, H.Eugene
  • Shea, Steven A.

Abstract

We investigate if known extrinsic and intrinsic factors fully account for the complex features observed in recordings of human activity as measured from forearm motion in subjects undergoing their regular daily routine. We demonstrate that the apparently random forearm motion possesses dynamic patterns characterized by robust scale-invariant and nonlinear features. These patterns remain stable from one subject to another and are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, since they persist during daily routine and when the same subjects undergo time-isolation laboratory experiments designed to account for the circadian phase and to control the known extrinsic factors. Further, by modeling the scheduled events imposed throughout the laboratory protocols, we demonstrate that they cannot account for the observed scaling patterns in activity fluctuations. We attribute these patterns to a previously unrecognized intrinsic nonlinear multi-scale control mechanism of human activity that is independent of known extrinsic factors such as random and scheduled events, as well as the known intrinsic factors which possess a single characteristic time scale such as circadian and ultradian rhythms.

Suggested Citation

  • Hu, Kun & Ivanov, Plamen Ch. & Chen, Zhi & Hilton, Michael F. & Stanley, H.Eugene & Shea, Steven A., 2004. "Non-random fluctuations and multi-scale dynamics regulation of human activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 307-318.
  • Handle: RePEc:eee:phsmap:v:337:y:2004:i:1:p:307-318
    DOI: 10.1016/j.physa.2004.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710400127X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruben Fossion & Ana Leonor Rivera & Juan C Toledo-Roy & Jason Ellis & Maia Angelova, 2017. "Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    2. Efthimios S. Skordas & Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2020. "Detrended fluctuation analysis of seismicity and order parameter fluctuations before the M7.1 Ridgecrest earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 697-711, January.
    3. Loukidis, Andronikos & Perez-Oregon, Jennifer & Pasiou, Ermioni D. & Sarlis, Nicholas V. & Triantis, Dimos, 2021. "Similarity of fluctuations in critical systems: Acoustic emissions observed before fracture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Damian G Kelty-Stephen, 2018. "Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    5. Sarlis, Nicholas V. & Skordas, Efthimios S. & Varotsos, Panayiotis A. & Ramírez-Rojas, Alejandro & Flores-Márquez, E. Leticia, 2019. "Investigation of the temporal correlations between earthquake magnitudes before the Mexico M8.2 earthquake on 7 September 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 475-483.
    6. França, Lucas Gabriel Souza & Montoya, Pedro & Miranda, José Garcia Vivas, 2019. "On multifractals: A non-linear study of actigraphy data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 612-619.
    7. Rashidisabet, Homa & Ajilore, Olusola & Leow, Alex & Demos, Alexander P., 2022. "Revisiting power-law estimation with applications to real-world human typing dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    8. Li, Ruixue & Wang, Jiang & Chen, Yingyuan, 2018. "Effect of the signal filtering on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 446-453.
    9. Seuront, Laurent & Seuront-Scheffbuch, Dorine, 2018. "Size rules life, but does it in the assessment of medical vigilance best practice? Towards a testable hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 707-715.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    2. Stanley, H.Eugene & Nunes Amaral, Luis A. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2001. "Quantifying economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 126-137.
    3. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    4. Thomakos, Dimitrios D. & Wang, Tao & Wille, Luc T., 2002. "Modeling daily realized futures volatility with singular spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 505-519.
    5. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    6. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    7. Ion Spanulescu & Victor A. Stoica & Ion Popescu, 2010. "An Econophysics Model for the Currency Exchange with Commission," Papers 1005.0313, arXiv.org.
    8. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    9. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    10. Hernández-Pérez, R., 2012. "Allan deviation analysis of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2883-2888.
    11. Adam Zawadowski & Gyorgy Andor & Janos Kertesz, 2006. "Short-term market reaction after extreme price changes of liquid stocks," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 283-295.
    12. Xu, Zhaoxia & Gençay, Ramazan, 2003. "Scaling, self-similarity and multifractality in FX markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 578-590.
    13. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    14. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    15. Keskinsoy, Bilal, 2017. "Taxi, Takeoff and Landing: Behavioural Patterns of Capital Flows to Emerging Markets," MPRA Paper 78129, University Library of Munich, Germany.
    16. Li, Shuping & Lu, Xinsheng & Li, Jianfeng, 2021. "Cross-correlations between the P2P interest rate, Shibor and treasury yields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    17. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    18. Hai-Chin Yu & Ming-Chang Huang, 2004. "Statistical properties of volatility in fractal dimensions and probability distribution among six stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(15), pages 1087-1095.
    19. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    20. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:337:y:2004:i:1:p:307-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.