IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1207.2946.html
   My bibliography  Save this paper

Microscopic understanding of heavy-tailed return distributions in an agent-based model

Author

Listed:
  • Thilo A. Schmitt
  • Rudi Schafer
  • Michael C. Munnix
  • Thomas Guhr

Abstract

The distribution of returns in financial time series exhibits heavy tails. In empirical studies, it has been found that gaps between the orders in the order book lead to large price shifts and thereby to these heavy tails. We set up an agent based model to study this issue and, in particular, how the gaps in the order book emerge. The trading mechanism in our model is based on a double-auction order book, which is used on nearly all stock exchanges. In situations where the order book is densely occupied with limit orders we do not observe fat-tailed distributions. As soon as less liquidity is available, a gap structure forms which leads to return distributions with heavy tails. We show that return distributions with heavy tails are an order-book effect if the available liquidity is constrained. This is largely independent of the specific trading strategies.

Suggested Citation

  • Thilo A. Schmitt & Rudi Schafer & Michael C. Munnix & Thomas Guhr, 2012. "Microscopic understanding of heavy-tailed return distributions in an agent-based model," Papers 1207.2946, arXiv.org.
  • Handle: RePEc:arx:papers:1207.2946
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1207.2946
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    2. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    3. Frederik Meudt & Thilo A. Schmitt & Rudi Schafer & Thomas Guhr, 2015. "Equilibrium Pricing in an Order Book Environment: Case Study for a Spin Model," Papers 1502.01125, arXiv.org.
    4. Roberto Mota Navarro & Francois Leyvraz & Hern'an Larralde, 2023. "Dynamical properties of volume at the spread in the Bitcoin/USD market," Papers 2304.01907, arXiv.org, revised May 2023.
    5. Meudt, Frederik & Schmitt, Thilo A. & Schäfer, Rudi & Guhr, Thomas, 2016. "Equilibrium pricing in an order book environment: Case study for a spin model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 228-235.
    6. Wagner, D.C. & Schmitt, T.A. & Schäfer, R. & Guhr, T. & Wolf, D.E., 2014. "Analysis of a decision model in the context of equilibrium pricing and order book pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 347-353.
    7. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    8. Daniel C. Wagner & Thilo A. Schmitt & Rudi Schafer & Thomas Guhr & Dietrich E. Wolf, 2014. "Analysis of a decision model in the context of equilibrium pricing and order book pricing," Papers 1404.7356, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Guglielmo Morelli & Michael Benzaquen & Marco Tarzia & Jean-Philippe Bouchaud, 2020. "Confidence collapse in a multihousehold, self-reflexive DSGE model," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(17), pages 9244-9249, April.
    2. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    3. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    4. David G. McMillan, 2010. "Present Value Model, Bubbles and Returns Predictability: Sector‐Level Evidence," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(5‐6), pages 668-686, June.
    5. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    6. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    7. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    8. Karlis, Alexandros & Galanis, Girogos & Terovitis, Spyridon & Turner, Matthew, 2017. "Heterogeneity and Clustering of Defaults," Economic Research Papers 270011, University of Warwick - Department of Economics.
    9. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    10. Christian Peretti, 2007. "Long Memory and Hysteresis," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 363-389, Springer.
    11. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    12. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    13. Dieci, Roberto & Foroni, Ilaria & Gardini, Laura & He, Xue-Zhong, 2006. "Market mood, adaptive beliefs and asset price dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 520-534.
    14. C. Chiarella & P. Khomin, 1999. "Adaptively evolving expectations in models of monetarydynamics‐ The fundamentalists forward looking," Annals of Operations Research, Springer, vol. 89(0), pages 21-34, January.
    15. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    16. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    17. Ayben Koy, 2022. "Regime Switching Mechanism during Energy Futures Price Bubbles," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 373-382.
    18. Serena Sordi & Marwil J. Dávila-Fernández, 2020. "Investment behaviour and “bull & bear” dynamics: modelling real and stock market interactions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 867-897, October.
    19. Noemi Schmitt & Frank Westerhoff, 2022. "Speculative housing markets and rent control: insights from nonlinear economic dynamics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 141-163, January.
    20. Soon Ryoo, 2013. "Minsky cycles in Keynesian models of growth and distribution," Review of Keynesian Economics, Edward Elgar Publishing, vol. 1(1), pages 37-60, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1207.2946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.