IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0197935.html
   My bibliography  Save this article

A heterogeneous artificial stock market model can benefit people against another financial crisis

Author

Listed:
  • Haijun Yang
  • Shuheng Chen

Abstract

This paper presents results of an artificial stock market and tries to make it more consistent with the statistical features of real stock data. Based on the SFI-ASM, a novel model is proposed to make agents more close to the real world. Agents are divided into four kinds in terms of different learning speeds, strategy-sizes, utility functions, and level of intelligence; and a crucial parameter has been found to ensure system stability. So, some parameters are appended to make the model which contains zero-intelligent and less-intelligent agents run steadily. Moreover, considering real stock markets change violently due to the financial crisis; the real stock markets are divided into two segments, before the financial crisis and after it. The optimal modified model before the financial crisis fails to replicate the statistical features of the real market after the financial crisis. Then, the optimal model after the financial crisis is shown. The experiments indicate that the optimal model after the financial crisis is able to replicate several of real market phenomena, including the first-order autocorrelation, kurtosis, standard deviation of yield series and first-order autocorrelation of yield square. We point out that there is a structural change in stock markets after the financial crisis, which can benefit people forecast the financial crisis.

Suggested Citation

  • Haijun Yang & Shuheng Chen, 2018. "A heterogeneous artificial stock market model can benefit people against another financial crisis," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-25, June.
  • Handle: RePEc:plo:pone00:0197935
    DOI: 10.1371/journal.pone.0197935
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197935
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197935&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0197935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    2. Stefan Thurner & J. Doyne Farmer & John Geanakoplos, 2012. "Leverage causes fat tails and clustered volatility," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 695-707, February.
    3. Tay, Nicholas S. P. & Linn, Scott C., 2001. "Fuzzy inductive reasoning, expectation formation and the behavior of security prices," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 321-361, March.
    4. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    5. Bray, Margaret, 1982. "Learning, estimation, and the stability of rational expectations," Journal of Economic Theory, Elsevier, vol. 26(2), pages 318-339, April.
    6. José Antonio Pascual & Javier Pajares, 2009. "A Generative Approach on the Relationship between Trading Volume, Prices, Returns and Volatility of Financial Assets," Lecture Notes in Economics and Mathematical Systems, in: Cesáreo Hernández & Marta Posada & Adolfo López-Paredes (ed.), Artificial Economics, chapter 0, pages 185-196, Springer.
    7. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    8. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    9. Sascha Baghestanian & Paul Gortner & Baptiste Massenot, 2017. "Compensation schemes, liquidity provision, and asset prices: an experimental analysis," Experimental Economics, Springer;Economic Science Association, vol. 20(2), pages 481-505, June.
    10. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    11. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    12. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    13. Ehrentreich, Norman, 2006. "Technical trading in the Santa Fe Institute Artificial Stock Market revisited," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 599-616, December.
    14. Kahle, Kathleen M. & Stulz, René M., 2013. "Access to capital, investment, and the financial crisis," Journal of Financial Economics, Elsevier, vol. 110(2), pages 280-299.
    15. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    16. Beltrametti, Luca & Fiorentini, Riccardo & Marengo, Luigi & Tamborini, Roberto, 1997. "A learning-to-forecast experiment on the foreign exchange market with a classifier system," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1543-1575, June.
    17. José A. Pascual & J. Pajares & A. López-Paredes, 2006. "Explaining the Statistical Features of the Spanish Stock Market from the Bottom-Up," Lecture Notes in Economics and Mathematical Systems, in: Charlotte Bruun (ed.), Advances in Artificial Economics, chapter 20, pages 283-294, Springer.
    18. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    19. Mario A Bertella & Felipe R Pires & Henio H A Rego & Jonathas N Silva & Irena Vodenska & H Eugene Stanley, 2017. "Confidence and self-attribution bias in an artificial stock market," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-20, February.
    20. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    21. Haijun Yang & Harry Wang & Gui Sun & Li Wang, 2015. "A comparison of U.S and Chinese financial market microstructure: heterogeneous agent-based multi-asset artificial stock markets approach," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 901-924, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wlademir Prates & Newton Da Costa Jr & Manuel Rocha Armada & Sergio Da Silva, 2019. "Propensity to sell stocks in an artificial stock market," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    2. Haijun Yang & Harry Wang & Gui Sun & Li Wang, 2015. "A comparison of U.S and Chinese financial market microstructure: heterogeneous agent-based multi-asset artificial stock markets approach," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 901-924, November.
    3. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    4. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    5. Arvid Oskar Ivar Hoffmann & Wander Jager & J. H. Von Eije, 2007. "Social Simulation of Stock Markets: Taking It to the Next Level," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-7.
    6. Panchenko, Valentyn & Gerasymchuk, Sergiy & Pavlov, Oleg V., 2013. "Asset price dynamics with heterogeneous beliefs and local network interactions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2623-2642.
    7. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    8. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    9. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    10. Yeh, Chia-Hsuan, 2008. "The effects of intelligence on price discovery and market efficiency," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 613-625, December.
    11. Chueh-Yung Tsao & Ya-Chi Huang, 2018. "Revisiting the issue of survivability and market efficiency with the Santa Fe Artificial Stock Market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 537-560, October.
    12. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    13. Ryuichi YAMAMOTO, 2005. "Evolution with Individual and Social Learning in an Agent-Based Stock Market," Computing in Economics and Finance 2005 228, Society for Computational Economics.
    14. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    16. Pyo, Dong-Jin, 2014. "A Multi-Factor Model of Heterogeneous Traders in a Dynamic Stock Market," Staff General Research Papers Archive 37358, Iowa State University, Department of Economics.
    17. Chia-Hsuan Yeh, 2007. "The role of intelligence in time series properties," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 95-123, September.
    18. Ryuichi Yamamoto, 2011. "Volatility clustering and herding agents: does it matter what they observe?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(1), pages 41-59, May.
    19. Jasmina Hasanhodzic & Andrew Lo & Emanuele Viola, 2011. "A computational view of market efficiency," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1043-1050.
    20. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.