IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006572.html
   My bibliography  Save this article

Comparing Bayesian and non-Bayesian accounts of human confidence reports

Author

Listed:
  • William T Adler
  • Wei Ji Ma

Abstract

Humans can meaningfully report their confidence in a perceptual or cognitive decision. It is widely believed that these reports reflect the Bayesian probability that the decision is correct, but this hypothesis has not been rigorously tested against non-Bayesian alternatives. We use two perceptual categorization tasks in which Bayesian confidence reporting requires subjects to take sensory uncertainty into account in a specific way. We find that subjects do take sensory uncertainty into account when reporting confidence, suggesting that brain areas involved in reporting confidence can access low-level representations of sensory uncertainty, a prerequisite of Bayesian inference. However, behavior is not fully consistent with the Bayesian hypothesis and is better described by simple heuristic models that use uncertainty in a non-Bayesian way. Both conclusions are robust to changes in the uncertainty manipulation, task, response modality, model comparison metric, and additional flexibility in the Bayesian model. Our results suggest that adhering to a rational account of confidence behavior may require incorporating implementational constraints.Author summary: Humans are able to report a sense of confidence in decisions that we make. It is widely hypothesized that confidence reflects the computed probability that a decision is accurate; however, this hypothesis has not been fully explored. We use several human behavioral experiments to test a variety of models that may be considered to be distinct hypotheses about the computational underpinnings of confidence. We find that reported confidence does not appear to reflect the probability that a decision is correct, but instead emerges from a heuristic approximation of this probability.

Suggested Citation

  • William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.
  • Handle: RePEc:plo:pcbi00:1006572
    DOI: 10.1371/journal.pcbi.1006572
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006572
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006572&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joaquin Navajas & Chandni Hindocha & Hebah Foda & Mehdi Keramati & Peter E. Latham & Bahador Bahrami, 2017. "The idiosyncratic nature of confidence," Nature Human Behaviour, Nature, vol. 1(11), pages 810-818, November.
    2. Adam Kepecs & Naoshige Uchida & Hatim A. Zariwala & Zachary F. Mainen, 2008. "Neural correlates, computation and behavioural impact of decision confidence," Nature, Nature, vol. 455(7210), pages 227-231, September.
    3. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    4. Laurence Aitchison & Dan Bang & Bahador Bahrami & Peter E Latham, 2015. "Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-23, October.
    5. Megan A. K. Peters & Thomas Thesen & Yoshiaki D. Ko & Brian Maniscalco & Chad Carlson & Matt Davidson & Werner Doyle & Ruben Kuzniecky & Orrin Devinsky & Eric Halgren & Hakwan Lau, 2017. "Perceptual confidence neglects decision-incongruent evidence in the brain," Nature Human Behaviour, Nature, vol. 1(7), pages 1-8, July.
    6. Aurelio Cortese & Kaoru Amano & Ai Koizumi & Mitsuo Kawato & Hakwan Lau, 2016. "Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance," Nature Communications, Nature, vol. 7(1), pages 1-18, December.
    7. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2012. "Probabilistic Computation in Human Perception under Variability in Encoding Precision," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    8. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    9. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Rausch & Michael Zehetleitner, 2019. "The folded X-pattern is not necessarily a statistical signature of decision confidence," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-18, October.
    2. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    3. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    5. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    7. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    8. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    9. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    10. Long Luu & Alan A Stocker, 2021. "Categorical judgments do not modify sensory representations in working memory," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-28, June.
    11. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    12. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    13. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    14. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    15. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    16. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    17. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    18. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    19. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.