IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002698.html
   My bibliography  Save this article

Risk-Sensitivity in Bayesian Sensorimotor Integration

Author

Listed:
  • Jordi Grau-Moya
  • Pedro A Ortega
  • Daniel A Braun

Abstract

Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion. Author Summary: Statistically optimal decision-makers use probabilistic predictive models of their environment to achieve their goals. However, in real life such probabilistic models can be wrong or only approximately true, in which case basing decisions exclusively on the statistics of such models can constitute a problematic decision criterion. In contrast, risk-sensitive decision-makers can take model uncertainty into account. They allow deviations from their probabilistic model depending on the quality of the predictions of the model. In particular, they trust their model less if it makes imprecise predictions and bias their decisions towards worst-case or best-case outcomes. Here we designed a sensorimotor task where subjects exhibit Bayesian information integration when they infer the hidden location of a target and they had to decide to make a more or less costly movement. We found that subjects exhibited a bias with respect to the statistically optimal movement towards less costly outcomes, the higher the uncertainty about the target location was. This interplay between estimation uncertainty and movement cost is consistent with a risk-sensitive decision criterion that takes model uncertainty into account.

Suggested Citation

  • Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2012. "Risk-Sensitivity in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-7, September.
  • Handle: RePEc:plo:pcbi00:1002698
    DOI: 10.1371/journal.pcbi.1002698
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002698
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002698&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arne J Nagengast & Daniel A Braun & Daniel M Wolpert, 2010. "Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    2. Edward J A Turnham & Daniel A Braun & Daniel M Wolpert, 2011. "Inferring Visuomotor Priors for Sensorimotor Learning," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    3. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    4. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2016. "Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    2. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    3. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    2. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.
    3. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    5. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    7. Carrillo, Juan & Brocas, Isabelle, 2007. "Reason, Emotion and Information Processing in the Brain," CEPR Discussion Papers 6535, C.E.P.R. Discussion Papers.
    8. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    9. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Udo A Ernst & Sunita Mandon & Nadja Schinkel–Bielefeld & Simon D Neitzel & Andreas K Kreiter & Klaus R Pawelzik, 2012. "Optimality of Human Contour Integration," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-17, May.
    11. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2016. "Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    12. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    13. Edward J A Turnham & Daniel A Braun & Daniel M Wolpert, 2011. "Inferring Visuomotor Priors for Sensorimotor Learning," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    14. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    15. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    16. Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.
    17. Joseph G Makin & Matthew R Fellows & Philip N Sabes, 2013. "Learning Multisensory Integration and Coordinate Transformation via Density Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-17, April.
    18. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    19. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    20. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.