IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146732.html
   My bibliography  Save this article

CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

Author

Listed:
  • Atefeh Kazeroonian
  • Fabian Fröhlich
  • Andreas Raue
  • Fabian J Theis
  • Jan Hasenauer

Abstract

Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

Suggested Citation

  • Atefeh Kazeroonian & Fabian Fröhlich & Andreas Raue & Fabian J Theis & Jan Hasenauer, 2016. "CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0146732
    DOI: 10.1371/journal.pone.0146732
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146732
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146732&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajesh Ramaswamy & Nélido González-Segredo & Ivo F. Sbalzarini & Ramon Grima, 2012. "Discreteness-induced concentration inversion in mesoscopic chemical systems," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    4. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    7. Laura Corrales-Guerrero & Asaf Tal & Rinat Arbel-Goren & Vicente Mariscal & Enrique Flores & Antonia Herrero & Joel Stavans, 2015. "Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-21, April.
    8. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    9. Ming Ni & Antoine L Decrulle & Fanette Fontaine & Alice Demarez & Francois Taddei & Ariel B Lindner, 2012. "Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-11, December.
    10. Martiny, Emil S. & Jensen, Mogens H. & Heltberg, Mathias S., 2022. "Detecting limit cycles in stochastic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    11. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    12. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    13. Vera Bettenworth & Simon Vliet & Bartosz Turkowyd & Annika Bamberger & Heiko Wendt & Matthew McIntosh & Wieland Steinchen & Ulrike Endesfelder & Anke Becker, 2022. "Frequency modulation of a bacterial quorum sensing response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    15. Jessica A Lee & Siavash Riazi & Shahla Nemati & Jannell V Bazurto & Andreas E Vasdekis & Benjamin J Ridenhour & Christopher H Remien & Christopher J Marx, 2019. "Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-38, November.
    16. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    18. Angélique Richard & Loïs Boullu & Ulysse Herbach & Arnaud Bonnafoux & Valérie Morin & Elodie Vallin & Anissa Guillemin & Nan Papili Gao & Rudiyanto Gunawan & Jérémie Cosette & Ophélie Arnaud & Jean-Ja, 2016. "Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process," PLOS Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    19. Joby John & Jonathan B Dingwell & Joseph P Cusumano, 2016. "Error Correction and the Structure of Inter-Trial Fluctuations in a Redundant Movement Task," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-30, September.
    20. Christine Andres & Jan Hasenauer & Frank Allgower & Tim Hucho, 2012. "Threshold-Free Population Analysis Identifies Larger DRG Neurons to Respond Stronger to NGF Stimulation," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.