IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005122.html
   My bibliography  Save this article

Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion

Author

Listed:
  • Mahdi Golkaram
  • Stefan Hellander
  • Brian Drawert
  • Linda R Petzold

Abstract

We seek to elucidate the role of macromolecular crowding in transcription and translation. It is well known that stochasticity in gene expression can lead to differential gene expression and heterogeneity in a cell population. Recent experimental observations by Tan et al. have improved our understanding of the functional role of macromolecular crowding. It can be inferred from their observations that macromolecular crowding can lead to robustness in gene expression, resulting in a more homogeneous cell population. We introduce a spatial stochastic model to provide insight into this process. Our results show that macromolecular crowding reduces noise (as measured by the kurtosis of the mRNA distribution) in a cell population by limiting the diffusion of transcription factors (i.e. removing the unstable intermediate states), and that crowding by large molecules reduces noise more efficiently than crowding by small molecules. Finally, our simulation results provide evidence that the local variation in chromatin density as well as the total volume exclusion of the chromatin in the nucleus can induce a homogenous cell population.Author Summary: The cellular nucleus is packed with macromolecules such as DNAs and proteins, which leaves limited space for other molecules to move around. Recent experimental results by C. Tan et al. have shown that macromolecular crowding can regulate gene expression, resulting in a more homogenous cell population. We introduce a computational model to uncover the mechanism by which macromolecular crowding functions. Our results suggest that macromolecular crowding limits the diffusion of the transcription factors and attenuates the transcriptional bursting, which leads to a more homogenous cell population. Regulation of gene expression noise by macromolecules depends on the size of the crowders, i.e. larger macromolecules can reduce the noise more effectively than smaller macromolecules. We also demonstrate that local variation of chromatin density can affect the noise of gene expression. This shows the importance of the chromatin structure in gene expression regulation.

Suggested Citation

  • Mahdi Golkaram & Stefan Hellander & Brian Drawert & Linda R Petzold, 2016. "Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:plo:pcbi00:1005122
    DOI: 10.1371/journal.pcbi.1005122
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005122
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005122&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William J. Blake & Mads KÆrn & Charles R. Cantor & J. J. Collins, 2003. "Noise in eukaryotic gene expression," Nature, Nature, vol. 422(6932), pages 633-637, April.
    2. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    3. Michael J Lawson & Brian Drawert & Mustafa Khammash & Linda Petzold & Tau-Mu Yi, 2013. "Spatial Stochastic Dynamics Enable Robust Cell Polarization," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-12, July.
    4. Sabrina L. Spencer & Suzanne Gaudet & John G. Albeck & John M. Burke & Peter K. Sorger, 2009. "Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis," Nature, Nature, vol. 459(7245), pages 428-432, May.
    5. Shinya Yamanaka, 2009. "Elite and stochastic models for induced pluripotent stem cell generation," Nature, Nature, vol. 460(7251), pages 49-52, July.
    6. David M Holloway & Francisco J P Lopes & Luciano da Fontoura Costa & Bruno A N Travençolo & Nina Golyandina & Konstantin Usevich & Alexander V Spirov, 2011. "Gene Expression Noise in Spatial Patterning: hunchback Promoter Structure Affects Noise Amplitude and Distribution in Drosophila Segmentation," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-18, February.
    7. Oi Kwan Wong & Martin Guthold & Dorothy A Erie & Jeff Gelles, 2008. "Interconvertible Lac Repressor–DNA Loops Revealed by Single-Molecule Experiments," PLOS Biology, Public Library of Science, vol. 6(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    2. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    3. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    5. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Marco Villani & Alessia Barbieri & Roberto Serra, 2011. "A Dynamical Model of Genetic Networks for Cell Differentiation," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-9, March.
    7. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    8. David M Holloway & Alexander V Spirov, 2017. "Transcriptional bursting in Drosophila development: Stochastic dynamics of eve stripe 2 expression," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    9. Leighton T Izu & Tamás Bányász & Ye Chen-Izu, 2015. "Optimizing Population Variability to Maximize Benefit," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    10. Li, Hongying & Yao, Chengli, 2017. "The influence of internal noise on the detection of hormonal signal with the existence of external noise in a cell system," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 1-6.
    11. Yichen Li & Yumin Li & Hui Zhang & Yong Chen, 2011. "MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
    12. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    13. Chih-Yuan Hsu & Bor-Sen Chen, 2016. "Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    14. Anyou Wang & Ying Du & Qianchuan He & Chunxiao Zhou, 2013. "A Quantitative System for Discriminating Induced Pluripotent Stem Cells, Embryonic Stem Cells and Somatic Cells," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    15. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    16. Blasi, Monica Francesca & Casorelli, Ida & Colosimo, Alfredo & Blasi, Francesco Simone & Bignami, Margherita & Giuliani, Alessandro, 2005. "A recursive network approach can identify constitutive regulatory circuits in gene expression data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 349-370.
    17. Chunjuan Zhu & Zibo Chen & Qiwen Sun, 2022. "Stochastic Transcription with Alterable Synthesis Rates," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
    18. Laura Corrales-Guerrero & Asaf Tal & Rinat Arbel-Goren & Vicente Mariscal & Enrique Flores & Antonia Herrero & Joel Stavans, 2015. "Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-21, April.
    19. Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    20. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.