IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004923.html
   My bibliography  Save this article

Stochastic Simulation of Biomolecular Networks in Dynamic Environments

Author

Listed:
  • Margaritis Voliotis
  • Philipp Thomas
  • Ramon Grima
  • Clive G Bowsher

Abstract

Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate—using decision-making by a large population of quorum sensing bacteria—that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.Author Summary: Simulation algorithms have become indispensable tools in modern quantitative biology, providing deep insight into many biochemical systems, including gene regulatory networks. However, current stochastic simulation approaches handle the effects of fluctuating extracellular signals and upstream processes poorly, either failing to give qualitatively reliable predictions or being very inefficient computationally. Here we introduce the Extrande method, a novel approach for simulation of biomolecular networks embedded in the dynamic environment of the cell and its surroundings. The method is accurate and computationally efficient, and hence fills an important gap in the field of stochastic simulation. In particular, we employ it to study a bacterial decision-making network and demonstrate that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate.

Suggested Citation

  • Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
  • Handle: RePEc:plo:pcbi00:1004923
    DOI: 10.1371/journal.pcbi.1004923
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004923
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004923&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John S. O’Neill & Gerben van Ooijen & Laura E. Dixon & Carl Troein & Florence Corellou & François-Yves Bouget & Akhilesh B. Reddy & Andrew J. Millar, 2011. "Circadian rhythms persist without transcription in a eukaryote," Nature, Nature, vol. 469(7331), pages 554-558, January.
    2. Clive G Bowsher & Margaritis Voliotis & Peter S Swain, 2013. "The Fidelity of Dynamic Signaling by Noisy Biomolecular Networks," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
    3. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    4. Leland H. Hartwell & John J. Hopfield & Stanislas Leibler & Andrew W. Murray, 1999. "From molecular to modular cell biology," Nature, Nature, vol. 402(6761), pages 47-52, December.
    5. Christoph Zechner & Heinz Koeppl, 2014. "Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-9, December.
    6. Gürol M. Süel & Jordi Garcia-Ojalvo & Louisa M. Liberman & Michael B. Elowitz, 2006. "An excitable gene regulatory circuit induces transient cellular differentiation," Nature, Nature, vol. 440(7083), pages 545-550, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    4. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    6. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Lucy Ham & Megan A. Coomer & Kaan Öcal & Ramon Grima & Michael P. H. Stumpf, 2024. "A stochastic vs deterministic perspective on the timing of cellular events," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Sandra H Dandach & Mustafa Khammash, 2010. "Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-11, November.
    9. Karin Münch & Richard Münch & Rebekka Biedendieck & Dieter Jahn & Johannes Müller, 2019. "Evolutionary model for the unequal segregation of high copy plasmids," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-17, March.
    10. Georg Fritz & Judith A Megerle & Sonja A Westermayer & Delia Brick & Ralf Heermann & Kirsten Jung & Joachim O Rädler & Ulrich Gerland, 2014. "Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    11. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    12. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    13. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    14. Manfred Füllsack, 2011. "Firstness - As seen from the perspective of Complexity Research," E-LOGOS, Prague University of Economics and Business, vol. 2011(1), pages 1-19.
    15. Laura Corrales-Guerrero & Asaf Tal & Rinat Arbel-Goren & Vicente Mariscal & Enrique Flores & Antonia Herrero & Joel Stavans, 2015. "Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-21, April.
    16. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    17. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    18. Ming Ni & Antoine L Decrulle & Fanette Fontaine & Alice Demarez & Francois Taddei & Ariel B Lindner, 2012. "Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-11, December.
    19. Ruoyu Luo & Lin Ye & Chenyang Tao & Kankan Wang, 2013. "Simulation of E. coli Gene Regulation including Overlapping Cell Cycles, Growth, Division, Time Delays and Noise," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    20. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.